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 i g  h  l  i  g  h  t  s

DARPA’s  programs  foster  multi-disciplinary  collaborations.
DARPA’s  BCI  programs  span  four  major  challenges:  detect,  emulate,  restore,  &  improve.
Aims:  restore  function  after  injury;  improve  performance  of  healthy  individuals.
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a  b  s  t  r  a  c  t

The  Defense  Advanced  Research  Projects  Agency  (DARPA)  has funded  innovative  scientific  research  and
technology  developments  in  the field  of  brain–computer  interfaces  (BCI)  since  the  1970s.  This  review
highlights  some  of DARPA’s  major  advances  in the  field  of  BCI,  particularly  those  made  in  recent  years.
Two  broad  categories  of  DARPA  programs  are  presented  with  respect  to  the  ultimate  goals  of supporting
eywords:
ARPA
rain–computer interface
rain–machine interface
euroscience

the  nation’s  warfighters:  (1)  BCI efforts  aimed  at restoring  neural  and/or  behavioral  function,  and  (2)
BCI  efforts  aimed  at improving  human  training  and  performance.  The  programs  discussed  are synergis-
tic  and  complementary  to  one  another,  and,  moreover,  promote  interdisciplinary  collaborations  among
researchers,  engineers,  and  clinicians.  Finally,  this  review  includes  a summary  of some  of  the  remaining
challenges  for  the field  of BCI,  as  well  as  the  goals  of  new  DARPA  efforts  in  this  domain.

©  2014  The  Authors.  Published  by  Elsevier  B.V. This  is  an  open  access  article  under  the  CC  BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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. Introduction

Brain–computer interfaces (BCI) are systems that mediate
ignaling between the brain and various technological devices. The
rst demonstrations of BCI in humans and animals took place in the
960s. In 1964, Grey Walter demonstrated use of non-invasively
ecorded encephalogram (EEG) signals from a human subject to
ontrol a slide projector (Graimann et al., 2010). Shortly thereafter,
etz demonstrated that, by providing food reward to awake, non-
uman primates along with auditory or visual feedback on the firing
ates of neurons in the motor cortex, these neurons could be oper-
ntly conditioned to increase their firing rates by 50–500% (Fetz,
969). In 1971 the term brain-computer interface (BCI) was  coined
y Jaceques J. Vidal, who laid out a comprehensive experimental
esearch plan to interface the human brain with computers (Vidal,
973), including the XDS Sigma 7 at the University of California
t Los Angeles that coincidently also served as the first node of
he Advanced Research Projects Agency Network (ARPANET). Fol-
owing these initial demonstrations, the field of BCI has expanded
ignificantly, encompassing both invasive and non-invasive neural
ecordings in humans and animals, spanning a range of sensor-
motor and cognitive functions, and incorporating novel feedback

echanisms in closed-loop systems.
While most closed-loop BCI systems provide feedback to the

ser on system performance through the presentation of sen-
ory (primarily visual) information, approaches have also been
eveloped to provide sensory feedback through direct stimula-
ion of the nervous system. For instance, unidirectional systems
uch as cochlear and retinal implants can provide partial restora-
ion of sight and hearing through the direct stimulation of neurons
ithin the cochlea and retina, respectively (see Géléoc and Holt,

014; Chuang et al., 2014 for review). Recent explorations of tar-
eted reinnervation in amputees suggest that such approaches may
ot only enable prosthetic limb control through peripheral nerve
ignals but may  also provide a means of conveying somatosen-
ory sensation of touch, temperature, pain, and vibration to these
atients (Hebert et al., 2013).

Sensory percepts can also be elicited through direct brain stim-
lation (Schiller et al., 2011; Kar and Krekelberg, 2012; Larson and
heung, 2012; Tabot et al., 2013; Zaaimi et al., 2013; May  et al.,
013; Johnson et al., 2013). Such findings provide a proof of con-
ept for the integration of stimulation-induced sensory feedback
nto BCI systems as a novel mechanism of closing the loop (e.g.,
ee O’Doherty et al., 2011). In addition to providing an alternative
eans of sensory perception, direct brain stimulation can also be

sed to bridge the gap across perturbed neural connections (Berger
t al., 2011). Studies suggest that neural stimulation may  even

ave the potential to restore functional connectivity and associated
ehaviors through modulation of molecular mechanisms of synap-
ic efficacy (Jacobs et al., 2012; Rahman et al., 2013; Song et al.,
 . . .  . . . . .  .  . . . . . . .  . . . . . .  . . . . .  . .  .  . . . . . . .  . .  . . . . .  .  . . . . .  . .  .  .  . .  . . . .  . . . . . .  . .  . .  . . . .  65

2013). In this regard, BCI technologies may not only be useful for
enabling function, but also have the potential for implementation
as a therapeutic device for restoring function.

A primary application of BCI is to provide a mechanism for move-
ment or communication by patients who  are unable to move or
communicate through normal pathways. Such approaches have
included the translation of recorded neural signals associated with
sensory and goal-directed mechanisms into navigation or selection
commands, enabling the user to move through a virtual or real envi-
ronment or to select letters to type for purposes of communication
(Thurlings et al., 2010). Other approaches have included decoding of
neural signals directly associated with the intent to move (Collinger
et al., 2013; Doud et al., 2011) or speak (Pei et al., 2011). In addi-
tion to approaches that leverage correlates of user intent, BCI has
been utilized to provide neurofeedback to users, enabling them to
regulate neural and behavioral functions normally not under voli-
tional control. Such functions include attention, pain, emotion, and
memory (Birbaumer et al., 2009).

While people living with injury remain a primary end-user tar-
get population for the field of BCI, the increasing availability of
portable hardware for real-time non-invasive sensing of neural
activity has also led to the development of commercial BCI applica-
tions for healthy individuals, as seen by recent incorporation of BCI
within the gaming industry. BCI games have used neural signals to
control or influence functions such as steering through virtual envi-
ronments, changing the form and function of avatars, or controlling
the movement of a virtual ball through collaboration or competition
among multiple users (for review, see Coyle et al., 2013; Marshall
et al., 2013).

Recent advances in the field of BCI have been achieved via
a broad spectrum of funding sources across academic, industry,
clinical, and various international government organizations. The
current review, however, is focused on BCI research funded by the
Defense Advanced Research Projects Agency (DARPA). Established
in 1958 in response to the Soviet launch of the world’s first satellite,
Sputnik, DARPA’s mission is to maintain technological superiority
of the United States military and prevent technological surprise by
U.S. adversaries (Defense Advanced Research Projects and Agency,
2013). To achieve this mission, DARPA invests in revolutionary,
high-risk/high-reward research efforts ranging from fundamental
scientific discoveries to the application of these discoveries for mil-
itary use. DARPA’s primary constituents are the military services
and American warfighters. The agency’s goal is to provide these
constituents with the capabilities to perform their complex duties
and to quickly and effectively recover from adverse events.

While DARPA itself does not conduct scientific research, the
agency’s program managers and directors, whose expertise spans

diverse scientific and military fields, are highly immersed in
the scientific research community as well as the U.S. mili-
tary community. Through interactions with these communities,
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ARPA assesses current needs and state-of-the art scientific
nd technological achievements and identifies areas in which
roundbreaking advances could revolutionize national security
apabilities. Through its programs, DARPA funds research and
evelopment efforts conducted by a broad spectrum of industry,
cademic, and other government organizations. These efforts range
rom fundamental scientific exploration to development of pro-
otype technological devices with specific end-user applications.
dditionally, DARPA facilitates transition and operationalization of
uccessful results from its programs for military and commercial
se.

In recent years, DARPA has supported highly innovative research
n the field of neuroscience, fostering multi-disciplinary collabora-
ions among neurobiologists, neuropsychologists, mathematicians,
nd engineers. The goals of these efforts span four major challenges:

Detect – Develop diagnostics, models, and devices to characterize
and mitigate threats to the human brain.
Emulate – Leverage inspiration from functional brain networks to
efficiently synthesize information.
Restore – Reestablish behavioral and cognitive function lost as a
result of injury to the brain or body.
Improve – Develop brain-in-the loop systems to accelerate train-
ing and improve functional behaviors.

Of relevance to this special issue, many of DARPA’s investments
n neuroscience have encompassed the development of novel
CI technologies. These DARPA-funded efforts have enabled new
eural interface technologies for detecting multi-scale and multi-
egion brain function in real time, as well as complex mathematical
lgorithms that emulate the translation of neural activity into activ-
ty in downstream brain areas and resulting behavioral functions.
ogether, these neural interfaces and mathematical models are
ntegrated into BCI systems that can restore and/or facilitate near -
atural neural and behavioral function.

DARPA’s initial investments in BCI began in 1974 under the
lose-Coupled Man/Machine Systems (later renamed Biocybernet-

cs) program. This program investigated the application of human
hysiological signals, including brain signals as measured non-

nvasively using either EEG or magnetoencephalography (MEG),
o enable direct communication between humans and machines
nd to monitor neural states associated with vigilance, fatigue,
motions, decision-making, perception, and general cognitive abil-
ty. The program yielded notable advancements, such as detailed
nderstanding of single-trial, sensory-evoked responses in the EEG
f human participants. These efforts demonstrated that neural
ctivity in response to visual checkerboard stimuli, alternating
t different frequencies at each of four fixation points, could be
ecoded in real time and used to navigate a cursor through a
imple maze (Vidal, 1977). In 2002 DARPA took a deeper dive
nto the field of BCI by launching its Brain Machine Interface (BMI)
rogram, shortly followed by the Human Assisted Neural Devices
HAND) program. These early programs tackled a wide array of
CI challenges including sensorimotor control of prosthetic devices
Carmena et al., 2003), facilitation of memory encoding (Song et al.,
007), decoding of visual inputs (Hung et al., 2005), development of
ynamic neural decoding algorithms (Gage et al., 2005), as well as
he development of new devices for high-resolution neural imaging
Vetter et al., 2004). These DARPA-funded efforts provided many of
he foundational discoveries and technologies that have enabled

ore recent developments in this field.
This review highlights several recent and ongoing DARPA-
unded programs that are aimed at utilizing BCI to either restore
eural and behavioral function following injury to the brain,
r to improve human performance through intervention during
raining or operational tasks. Notably, under President Obama’s
ence Methods 244 (2015) 52–67

Brain Research through Advancing Innovative Neurotechnologies
(BRAIN) Initiative, announced in April 2013, DARPA is currently
supporting new research efforts aimed at the development of novel
BCI technologies for restoring function in human clinical popu-
lations with either neuropsychiatric or memory dysfunction. The
goals of these new programs will be described further in the con-
clusion of this review.

2. DARPA BCI efforts to restore neural and behavioral
function

Recent and ongoing DARPA programs supporting the develop-
ment of BCI technologies to restore neural and behavioral function
include Revolutionizing Prosthetics,  Reorganization and Plasticity to
Accelerate Injury Recovery (REPAIR), Restorative Encoding Memory
Integration Neural Device (REMIND), and Reliable Neural Interface
Technology (RE-NET). These programs are complementary and syn-
ergistic, leveraging novel techniques to interface with the nervous
system, providing new fundamental approaches to modeling the
nervous system, and enabling direct communication with the brain,
body, and environment. For the application of actuation, Revolu-
tionizing Prosthetics is translating state of the art BCI systems to
restore sensorimotor function in humans, and REPAIR is utiliz-
ing animal models to advance neural decoder capabilities through
the incorporation of multi-scale, dynamic models that account for
the brain’s plastic changes underling sensorimotor function dur-
ing learning or following injury. The BCI system developed by
the REMIND program targets a different neurobehavioral system
– memory – and has demonstrated the improvement and restora-
tion of performance on memory tasks in animal models. Finally,
the RE-NET program is addressing challenges involved in develop-
ing safe, robust BCI systems for chronic use and is applicable to a
broad spectrum of BCI applications.

2.1. Revolutionizing Prosthetics

The Revolutionizing Prosthetics program began in 2006 with the
vision of restoring near-natural dexterity for people with loss of
upper-limb control. The objective was to allow Wounded Warrior
amputees to improve quality of life, maximize function and inde-
pendence, enable activities of daily living, and return to service (if
desired). DARPA embarked on this challenge in response to the
increased incidence of amputations and injuries to the nervous
system suffered by service members. Major upper extremity dis-
abilities are a significant problem for the Department of Defense
(DoD). Between 2000 and 2011, there were nearly 6000 amputa-
tions of service members within the US Armed Forces, with over
two-thirds of these instances involving upper extremity amputa-
tions (O’Donnell, 2012). Approximately 16.5% of amputees returned
to active duty, with return-to-duty rates of single amputees reach-
ing 20% (Stinner et al., 2010). Therefore, there is a need for
functional solutions that enable service members to deliver high
performance. In addition to amputees, the Revolutionizing Prosthet-
ics program also serves individuals with loss of upper extremity
function as a result of spinal cord injury (SCI). It is estimated that
there are nearly 300,000 individuals in the US living with SCI with
approximately 12,000 new cases every year (National Spinal Cord
Injury Statistical Center, 2013).

Prior to DARPA’s investments in this area, there were few
options for military personnel suffering with these disorders.
Remarkably, one of the most commonly used solutions to upper

extremity loss was  the split hook prosthetic developed in 1912
(Dorrance, 1912). Evaluation of the state-of-the-art revealed that
very little progress had been made in prosthetic innovation
since this time with meager advances with the 1938 Becker
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esign (Becker, 1942), National Academy of Science Artificial Limb
rogram of 1945 (Furman, 1962), and the available one-degree-of-
reedom (DOF) hands that were on the market in the early 2000s.
ARPA responded to the lack of advanced prosthetic limb options

or upper-extremity amputees with a two-pronged development
trategy. Both efforts focused on developing modular arm sys-
ems that could provide support to a variety of amputees including
ransradial, transhumeral, as well as full shoulder disarticulation.
evelopment of these prosthetic limbs involved highly demand-

ng specifications that mimicked attributes and capabilities of
eal human arms including weight, shape, and grip strength. Two
eams of investigators, DEKA and The Johns Hopkins University
pplied Physics Laboratory (JHU/APL), took on the task of designing
nd assembling these next generation arms to meet the program
emands (Johannes et al., 2011; Resnik et al., 2013). The advanced
ARPA arm systems, one with ten and the other with seventeen
iniature motors, enabled replication of near-natural hand and

rm movements and are available to the research and clinical
ommunities. Additionally, a virtual arm system is available for
rototyping (Armiger et al., 2011; Collinger et al., 2014).

In addition to the arms themselves, the Revolutionizing Prosthet-
cs program also produced innovations in the user control interface.
ince the diversity in loss of upper extremity function was high
mong military personnel, the control interfaces had to provide
ultiple options such that the user could choose the solution
ost appropriate to their own needs, thus leading to personalized
edicine. The first control interface developed under the Revolu-

ionizing Prosthetics program was a non-invasive control modality
hat does not require surgical procedures. It consisted of inertial

easurement units that could be placed on the shoes as well as
ressure/bump switches that could be attached to the torso. Move-
ent of the inertial units enabled actuation of all of the degrees

f freedom while the bump switches enabled changes in the arm
odes (hand grips, for example). The use of these interfaces was
ell received by prosthetic limb users, and over 7000 h among 77

mputees and quadriplegics have been logged during pilot test-
ng. Other viable approaches for peripheral control of these arm
ystems include the electromyogram (EMG), targeted muscle rein-
ervation (TMR), as well as nerve interfaces such as implanted
yoelectric sensors (IMES) (for a review, see Ortiz-Catalan et al.,

012). In May  2014, the DEKA arm system received U.S. Food and
rug Administration (FDA) approval. Initial input control modali-

ies in this approval include inertial and EMG  control. Efforts are
ngoing to make these systems available to military and civilian
ersonnel.

Beyond the use of inertial or EMG  control, Revolutionizing Pros-
hetics has provided transformative innovations in direct brain
ontrol of prosthetic limbs that enabled human users to think about
oving in much the same way they would control their own arm

o actuate the prosthetic arm systems (Collinger et al., 2013). This
ine of research and development involved real-time recording and
ecoding of motor cortical signals to provide research participants
ith tetraplegia the ability to control up to ten DOF with the pros-

hetic arm systems. The main enablers for near-natural control
nclude micro-electrode arrays for recording brain signals and com-
lex algorithms to translate neural activity into commands for the
otors throughout the prosthetic arm system. In the Revolutioniz-

ng Prosthetics program, single unit neuronal recordings have been
chieved in a human clinical patient via the implantation of two
ntracortical microelectrode arrays (Blackrock Microsystems, Salt
ake City, UT), each with 96 electrode shanks. The 4 mm × 4 mm
ssembly was implanted in the participant’s motor cortex (M1) and

onnected percutaneously through the use of two  head-mounted
edestals. Using preoperative structural and functional MRI  and
agnetoencephalography (MEG) to identify hand and finger acti-

ation areas in M1  for the purpose of decoding grasp behaviors, the
ence Methods 244 (2015) 52–67 55

arrays were implanted 14 mm apart through the use of a stereotaxic
surgical navigation system (Collinger et al., 2014). The combined
signals from these arrays allowed for the simultaneous recor-
ding of over 250 unique single units, which were then processed
in real-time to ultimately send commands to move the JHU/APL
prosthetic limb. The recorded signals passed through a Blackrock
Microsystems NeuroPort data acquisition system, which converted
neuronal firing rate (30-ms bins) into a functional mapping for
prosthetic limb commands in endpoint velocity space. Real-time
visual feedback from the prosthetic limb to the participant enabled
closed-loop control. Using this system, the participant achieved
control of the arm in three DOF (endpoint of the wrist) within
two weeks of implantation, and began operating on seven DOF
within five weeks (Collinger et al., 2013). Depending on the types
of signals acquired from the brain (single neuron vs. electrocor-
ticogram (ECoG)), new population vector decoding methodologies
and shared control architectures needed to be developed to allow
users to initialize their control of the system and then adaptively
learn to obtain increasing control of a greater number of degrees
of freedom (e.g., see Collinger et al., 2013). Applying such method-
ologies to novel behavioral paradigms, Revolutionizing Prosthetics
efforts have further elucidated the neural mechanisms underlying
human-tool interaction. These discoveries have enabled a deeper
understanding of how the brain represents motor control, environ-
mental cues, object interaction, and perception of neuroprosthetic
control (Hauschild et al., 2012; Collinger et al., 2013). Performance
was established both in terms of completion of various reach and
grasp tasks, and also by way of evaluation against functional metrics
such as the Action Research Arm Test (ARAT), a clinical outcome
measure derived from the stroke rehabilitation community (Lyle,
1981).

To continue to push the frontier of the intersection between
brain science and technology and deliver the most natural arm
systems, DARPA researchers have laid the foundation for adding
the next generation of neuroprosthetic control by exploring the
restoration of the sense of touch. Constructing closed-loop com-
plete sensorimotor systems is essential for identifying objects,
manipulating objects, and even grasping objects in the absence
of vision. Some of the first steps in developing these next gener-
ation interfaces have involved investigating how the non-human
primate brain encodes sensory information provided via natural
means (tactile stimulation of the subject’s own  fingers), and com-
paring that to the psychometric evaluation of the encoding of
sensory information delivered through cortical stimulation (Tabot
et al., 2013; Zaaimi et al., 2013). These efforts explored simple per-
cepts of touch, as well as complex encoding of slip and texture.
For the Revolutionizing Prosthetics program, a series of experi-
ments were performed at the University of Chicago to demonstrate
safety of chronically implanted stimulating electrode arrays in the
somatosensory cortex of non-human primates. The implant config-
uration consisted of two  100-channel, sputtered iridium oxide film
(SIROF)-tipped Utah electrode arrays (UEA) connected via Cere-
port connectors to a CereStim R96 stimulator, all manufactured by
Blackrock Microsystems. Stimulation was  delivered to three non-
human primates at 300 Hz across a range of charge amplitudes,
duty cycles, and interval durations. Sensory stimulation was  per-
formed for 4 h per day over a period of six months. The results
revealed no deficits in fine motor control and demonstrated safety
of the electrode-tissue interface (Chen et al., 2014). In tandem with
the safety study, an efficacy study was also performed at Univer-
sity of Chicago to characterize the relationship between mechanical
and electrical stimulation on tactile tasks (Berg et al., 2013). Using

both a 96-electrode SIROF-tipped UEA implanted in the hand rep-
resentation of Brodmann’s area 1 and two  16-electrode Floating
Microelectrode Arrays (MicroProbes for Life Sciences, Gaithersburg,
MD)  targeting the hand region in Brodmann’s area 3b, the implants
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Fig. 1. Idealized bidirectional brain–computer interface for closed-loop prosthetic control. Neural correlates of motor intent are recorded from electrode arrays implanted in
motor areas of the brain such as the primary motor cortex (M1). The signals are decoded and used to control the movement of a prosthetic arm. Sensors on the robotic arm
detect information on touch (via contacts with external objects) and/or proprioception (via movement and position of the prosthetic limb). Outputs from these sensors are
t trode 
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and alter the activity of large populations of neurons in awake,
hen  converted to patterns of stimulus pulses that are delivered via implanted elec

eprinted from “Restoring sensorimotor function through intracortical interfaces: 

euroscience, 15,  p. 315. Copyright 2014 by Nature Publishing Group. Reprinted wit

nd corresponding stimulation via a CereStim stimulator were
sed in a series of electrical detection tasks and compared against
echanical detection tasks. It was demonstrated that electrical

timulation sent in response to tactile stimulation of the prosthetic
nger showed equivalent detection performance to mechanical
timulation of the native finger, with a psychometric curve function
efining the relationship between mechanical and electrical sensa-
ion for use in subsequent stimulation experiments. This combined
uite of safety and efficacy data has been critical in the support of
DA Investigational Device Exemption (IDE) approval for testing in
uman clinical populations. The ultimate vision for transitioning
hese efforts for clinical use is to enable signals from sensors on
rosthetic fingers to be translated into stimulation signals deliv-
red directly to the sensory cortex, enabling patients to ‘feel’ when
heir prosthetic hand touches objects. This transition from visually
riven closed-loop control to full sensorimotor closed-loop con-
rol (see Fig. 1) is anticipated to enable increased user control of
rosthetic limbs, with faster response times and near-natural sen-
ation during performance of tasks with occluded views or those
hat require tactile feedback. It is hoped that these advances will
ontinue to improve independence and quality of life after injury
n users of prosthetic limbs.

.2. Reorganization and Plasticity to Accelerate Injury Recovery
REPAIR)

Although the BCI technologies developed under the Revolu-
ionizing Prosthetics program have proved quite remarkable in

nabling direct neural control of robotic limbs, the neural decoding
lgorithms do not capitalize on one of the brain’s fundamental char-
cteristics – plasticity. Importantly, brain function is not fixed or
arrays to sensory regions of the brain, such as primary somatosensory cortex (S1).

ss and looming challenges,” by S.J. Bensmaia and L.E. Miller, 2014, Nature Reviews
ission.

static, but rather it adapts in response to learning new information
(such as meeting a new person) or new behavioral skills (such as
riding a bicycle). Moreover, these learning processes are subserved
by brain activity at multiple spatial scales, ranging from the activity
of single neurons to coordinated patterns of activity across small
and large networks of neurons, and ultimately, to behavior. Such
changes also occur across multiple temporal scales, encompassing
millisecond level functional changes as well as structural changes
that can result in alterations in neural activity over days, weeks,
months, or longer. In addition to adaptation of the brain in response
to learning, the brain’s function can also be dynamically altered by
injury, either of the brain itself, such as in the case of traumatic
brain injury (TBI), or of the body – for instance, amputees no longer
have normal sensations of touch that are sent to the brain’s sensory
regions, and they can no longer use the brain’s motor control sys-
tems to directly move their affected limb (e.g., see Pohlmeyer et al.,
2014).

The goal of DARPA’s REPAIR program, initiated in 2010 and
projected to continue through 2015, is to develop a multi-scale,
biologically accurate model of neural function that accounts for
the brain’s adaptation over time. The computational models devel-
oped under REPAIR have focused on sensorimotor function, that
is, how the brain learns to use sensory information such as touch
or vision to generate appropriate reaching and grasping behaviors
in order to perform complex tasks (e.g., see Sanchez et al., 2012;
Shenoy and Nurmikko, 2012; Andersen et al., 2012). Under this
program, new neural interface tools have been designed to detect
behaving non-human primates across multiple spatial and tem-
poral scales. Neural recordings from these interfaces have been
used to develop and validate computational models that emulate
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ynamic functions of the brain and resulting behaviors. Through
ighly collaborative efforts across eight universities, the compu-
ational models developed under REPAIR are being integrated with
ne another and interfaced directly with the brain for the purpose of
estoring neural and behavioral function following neural injury or
ensory deprivation. The final dynamic model developed under the
EPAIR program is anticipated to be incorporated into a co-adaptive
CI system that optimally facilitates sensorimotor function in a
on-human primate by enabling adaptation of both the in silico
odel and biological brain. While research efforts conducted under

EPAIR have utilized only animal models, the new technologies
nd scientific insights will undoubtedly provide a foundation for
he development of novel therapeutic devices for human clinical
opulations.

Computational models developed under REPAIR include
iomimetic models that mimic  the properties of neuronal firing
nd dynamic connectivity across networks of neurons (Kerr
t al., 2012). Such models have been integrated with higher-level
iomimetic models of reinforcement learning that the brain
ndergoes while learning to perform new tasks (Mahmoudi and
anchez, 2011; Neymotin et al., 2013). REPAIR researchers have
lso developed low-dimensional models that predict state space
rajectories of population level neural activity involved in planning
nd execution of sensorimotor behaviors (Shenoy et al., 2013;
mes et al., 2014). Additionally, new sophisticated algorithms
ave been developed that decode neural representations of

orce related variables, such as torque, in addition to traditional
inematic variables (e.g., position), resulting in more natural
ensorimotor prosthetic control and the ability to compensate for
ovel dynamic environments, compared to traditional decoders
ased on kinematic variables alone (Chhatbar and Francis, 2013).
EPAIR investigators are developing and testing their models by
ecording neural activity in animals performing complex behav-
oral tasks, and, importantly, determining whether the models
orrectly predict multi-scale changes in brain activity and behavior
hen certain aspects of the brain’s activity are temporarily per-

urbed. Many of these studies are investigating neural correlates
f complex behaviors in freely moving non-human primates and
ave been made possible by recent developments in wireless
eural interfaces (Foster et al., 2012; Borton et al., 2013).

To perform precise, reversible perturbations of brain activity,
EPAIR researchers have leveraged and expanded upon recent
evelopments in optogenetics, enabling expression of bioengi-
eered opsins (light-sensitive channels) within the cell membranes
f specific types of neurons (Diester et al., 2011; Zalocusky and
eisseroth, 2013). These opsins undergo modified configurations

n response to specific wavelengths of light, altering the thresh-
lds for neuronal action potentials, and ultimately resulting in an
ncrease or decrease of neuronal firing activity in the presence of
pecific colors of light. Moreover, new neural interface hardware
eveloped under the REPAIR program has enabled optical neuro-
odulation simultaneous with electrical recording of single and
ulti-unit activity in awake, behaving non-human primates (e.g.,

ee Fig. 2) (Shenoy and Nurmikko, 2012; Ozden et al., 2013). These
ew developments have been of utmost importance in the REPAIR
rogram to facilitate modeling of the brain’s dynamic responses to
erturbations of neural activity.

In addition to reversibly perturbing brain activity to develop
nd validate computational models, REPAIR researchers have also
emonstrated that direct brain stimulation can be used to substi-
ute for missing sensory information. Dadarlat et al. demonstrated
he use of intracortical electrical microstimulation (ICMS) of the

on-human primate somatosensory cortex to convey the dynamic

ocation of the animal’s arm in relation to an unseen target location
Dadarlat et al., 2013). Notably, the patterns of stimulation were
rbitrary (i.e., did not reflect the brain’s actual firing patterns) but
ence Methods 244 (2015) 52–67 57

were fixed with respect to paired visual stimuli in conveying the
location of the target. Thus, the animal used the visual information
to learn the “meaning” of the electrical stimulation patterns and
was later able to successfully reach to targets using cortical stim-
ulation as feedback when the information conveyed by the visual
stimuli was either degraded or completely removed. As part of this
effort, the researchers also developed a computational model of
multisensory integration in a neural network (Makin et al., 2013).
The model demonstrates that correlations between visual and ICMS
inputs are sufficient for the network to learn the ICMS signal.
After learning, the model predicts how behavioral performance will
change depending on the saliency of sensory inputs. The model’s
predictions were validated by the empirical results reported by
Dadarlat et al., which demonstrated an increasing behavioral bias
toward information conveyed by the somatosensory prosthesis as
the information provided by the visual stimulus was degraded.
Ongoing REPAIR efforts are investigating the use of computational
models to derive optimal stimulation patterns and to determine
whether sensory feedback can be provided to animals through the
use of targeted optogenetic stimulation information (see Gilja et al.,
2011 for discussion). For example, preliminary results suggest that
artificial tactile sensation in the digit area can be induced through
optogenetic stimulation of the non-human primate somatosensory
cortex (May  et al., 2013). These efforts offer unique approaches to
providing sensory feedback within the context of closed-loop BCI.

While traditional closed-loop BCI systems provide feedback
to the user, REPAIR researchers have incorporated the ability to
provide feedback to both the user and the BCI system’s neural
decoder using adaptive models of brain function based on rein-
forcement learning. Some of these models have been interfaced
directly with the brain, paving the way for enabling both the brain
and the model to adapt to one another and to learn new behav-
ioral tasks through closed-loop BCI performance (Marsh et al., 2013;
Pohlmeyer et al., 2014). Recent REPAIR efforts have developed the
foundation for a fully autonomous, closed-loop BCI that uses real-
time recorded neural activity from the non-human primate brain,
both to directly control virtual reaching movements, and also to
provide feedback that enables the system to automatically “learn”
how to decode the brain’s motor output signals (Marsh et al., 2013).
In typical BCI systems, the neural decoder that controls virtual or
robotic motor outputs must be trained on how to effectively trans-
late signals from the brain’s motor cortical regions into appropriate
motor commands. However, REPAIR researchers discovered that
neurons in the motor cortex also respond differentially depend-
ing on whether or not the virtual reaching movements accurately
reflect the animal’s intent. The researchers demonstrated that these
biological “critic” signals can be used as feedback to the BCI in
order to iteratively update the motor output decoder so that its out-
put more accurately reflects the animal’s intent. Such an approach
is a radical departure from traditional BCIs that use kinematic
signals for feedback. This new functionality has the potential to
dramatically increase the flexibility of BCIs to quickly and automat-
ically adapt to performance in dynamic environments, including
performing tasks in changing environmental conditions, learning
completely new tasks, and adapting to the brain’s structural and
functional changes that occur during injury and recovery.

2.3. Co-adaptive BCI for restoration of sensorimotor function

While the efforts described above are focused largely on invasive
BCI technologies, an additional DARPA Small Business Innovation
Research (SBIR) effort is supporting a collaborative effort between

researchers at Advanced Brain Monitoring, Inc. and the Univer-
sity of Miami  to develop a BCI system that utilizes non-invasively
recorded EEG signals in patients with spinal cord injury to enable,
and potentially even restore, movement of their paralyzed arms
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Fig. 2. Coaxial optrode for simultaneous electrical recording and optogenetic neuromodulation. (a) Coaxial optrode cross-sectional schematic (top) and photograph (bottom).
(b)  Scanning electron microscope images of coaxial optrode tip. (c) Full-length photograph of coaxial optrode. (d) Photograph of coaxial optrode depicting reinforcing thin
stainless steel tube (310 �m diameter) and tissue penetrating portion of shaft (165 �m diameter). (e) Performance of the coaxial optrode is shown by optically modulated,
in  vivo electrophysiological recordings from somatosensory cortices in an anesthetized mouse (transgenic Thy1-ChR2/YFP, left), anesthetized rat (transduced with viral
construct AAV5-CAMKII�-C1V1-eYFP, middle), and awake behaving non-human primate (transduced with AAV5-CAMKII�-C1V1-eYFP, right). Blue and green bars indicate
timeframes of light delivery (at 473 nm for the mouse and 561 nm for the rat and non-human primate, respectively), highlighting light-induced increases in neuronal spiking
activity. (For interpretation of the references to color in figure legend, the reader is referred to the web  version of the article.)

Adapted from “A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates,” by I. Ozden, J. Wang, Y. Lu, T. May, J. Lee, W.  Goo, D.
J urmik
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lsevier. Adapted with permission.

Roset et al., 2013). To achieve this goal, the patient imagines open-
ng or closing his or her hand while EEG signals are recorded.
hese EEG signals, particularly those generated in motor cortical
reas associated with motor imagery, are detected, decoded, and
sed to trigger the activation of a functional electrical stimulation
FES) device worn on the patient’s arm and hand. The FES device
on-invasively delivers pulses of electrical stimulation to nerves

nnervating the muscles of the arm and hand. Depending on the
ocations of these pulses, the device can stimulate the patient’s
and to either open or close. Importantly, if the patient perceives
hat the output of the FES device is not consistent with the patient’s
ntent, the patient’s brain generates “error potentials” in the ongo-
ng EEG signal. Similar to the autonomous BCI concept investigated
ia invasive measures under the REPAIR program (described above),

hese non-invasively recorded error potentials are fed back to the
losed-loop BCI system, enabling automatic adjustment of the algo-
ithms that decode the brain’s motor EEG signals. In this way, the
ystem effectively “learns” the neural correlates underlying the
ko, 2013, Journal of Neuroscience Methods, 219(1),  p. 144 & 148. Copyright 2014 by

user’s intentions to move, thus restoring behavioral function. It
remains to be determined whether long-term use of this BCI sys-
tem can also restore disrupted connectivity between the central
and peripheral nervous systems, ultimately improving the ability of
patients with spinal cord injury to make limb movements without
reliance on the BCI.

2.4. Restorative Encoding Memory Integration Neural Device
(REMIND)

While a majority of BCI efforts have focused on restoring sen-
sory information (e.g., restoration of sight or hearing via retinal
or cochlear implants) or motor behaviors (e.g., through peripheral
or central nervous system control of computer cursor movements

or prosthetic limbs), very few have attempted to develop a cog-
nitive prosthesis. One such unique effort, initiated in 2002 under
DARPA’s Brain–Machine Interface (BMI) and Human Assisted Neural
Devices (HAND) programs, and later supported by DARPA’s REMIND
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rogram (2009–2014), focused on the development of a BCI system
or memory restoration. Under this program, collaborative efforts
etween teams led by researchers at Wake Forest University and
niversity of Southern California demonstrated the ability to detect
atterns of functional brain connectivity in the hippocampus and
refrontal cortex associated with successful memory encoding and
etrieval, respectively. These naturally occurring spatiotemporal
ring patterns across brain regions are emulated by a non-linear,
ulti-input, multi-output (“MIMO”) model, which inputs neural

ring patterns from one brain region and outputs predicted fir-
ng patterns in a downstream brain area (Song et al., 2007, 2009).

oreover, in their investigation of neural correlates of behavioral
erformance on the memory task, the researchers discovered that
he spatiotemporal patterns of hippocampal activity during mem-
ry encoding vary with respect to (1) whether the encoded item or
vent will subsequently be remembered or forgotten after a delay
eriod, and (2) the nature of the item or event being encoded (in
he rodent studies, encoded events are either a right or left lever
ress).

Taking their results a step (or rather, a leap) further, the
esearchers translated outputs of their computational model into
lectrical stimulation patterns that mimic  the hippocampal firing
atterns associated with correct encoding of a specific event. When
pplied to the hippocampus during memory encoding, the stimula-
ion significantly improved, on a greater number of trials, the ability
f rodents to subsequently remember an event (right vs. left lever
ress) following a long delay period (Berger et al., 2011; Hampson
t al., 2012b). Importantly, when the investigators examined the
ffects of reversed stimulation (i.e., stimulating with a biomimetic
attern associated with successfully encoding a given lever press,
ut while the animal was actually pressing the opposite lever),
hey found that the animals’ performance accuracy dropped below
ormal levels, further suggesting specificity of these stimulation
atterns.

More recently, REMIND investigators demonstrated improve-
ent of memory encoding and retrieval of items and their locations

y non-human primates through stimulation of the hippocampus
nd prefrontal cortex, respectively (Hampson et al., 2012c, 2013).
chieving this challenge was largely enabled by newly developed

echniques for conformal recording in the non-human primate
rain described in this special issue (Opris et al., 2014; Fetterhoff
t al., 2014). The biomorphic microelectrode arrays described by
pris et al. in this special issue have enabled conformal electro-
hysiological recordings as well as neurochemical measurements
f glutamate concentration within cortical microcircuits, enabling
he researchers to assess effects of electrical stimulation as well as

olecular correlates of task performance in non-human primates
Opris et al., 2012, 2014).

Using the rodent model, REMIND researchers investigated the
ffect of hippocampal stimulation on restoration of memory per-
ormance in rodents following infusion of the glutamate receptor
ntagonist MK801 into the hippocampus (Berger et al., 2011). The
K801 infusion reversibly disrupted the signaling between two

egions of the hippocampus that are crucial for memory encoding
nd drastically decreased behavioral performance on the memory
ask. However, when the animals received model-derived hip-
ocampal stimulation, their performance on the memory task
as in large part recovered. The researchers demonstrated similar

estoration of performance by applying model-derived stimulation
atterns to the prefrontal cortex of non-human primates follow-

ng reversible pharmacological disruption of activity in this brain
egion (Hampson et al., 2012c).
During their initial studies, the REMIND investigators derived
emory prosthetic stimulation patterns for a given animal based

n a model of that animal’s own brain activity. However, they
ater discovered that aspects of these spatiotemporal patterns of
ence Methods 244 (2015) 52–67 59

brain activity exhibited remarkable consistency across animals
(Deadwyler et al., 2013). To demonstrate the applicability of the
model outputs across animals, the researchers trained one sub-
set of rodents to be “experts” on the memory task – that is, these
animals performed very well on the task, even when they had to
remember the event for delays up to 60 s (which is quite difficult
for a rat). Another subset of “delay-naïve” animals was  trained on
the task, but these animals were not trained to remember events
across time delays of any length. When presented with trials con-
taining a delay period between the initial lever press and the
non-match response, the delay-naïve animals were not able to
respond correctly. However, in a novel “donor-recipient” paradigm,
in which an expert rat and a delay-naïve rat performed the memory
task concurrently in separate chambers, hippocampal activity was
recorded from the expert rat during memory encoding and trans-
lated in real-time to stimulation patterns that were immediately
applied to the hippocampus of the delay-naïve rat. The perfor-
mance of delay-naïve rates on long-delay trials was significantly
improved, as compared to long-delay trials in which no stimula-
tion was delivered. The researchers also leveraged the similarity
of hippocampal firing patterns across over 40 rodents to develop a
“generic” stimulation pattern, that, when applied to the hippocam-
pus of a different animal during memory encoding, significantly
boosted task performance (Hampson et al., 2012a). These studies,
combined with the pharmacological disruption studies described
above, raise the question of whether “generic” stimulation patterns
may  also be leveraged to recover memory performance in indi-
viduals with memory impairments resulting from neural injury or
dysfunction.

Interestingly, Hampson et al. observed that applying model-
derived stimulation patterns to the rodent hippocampus during
memory encoding resulted in behavioral improvement of task per-
formance not only on stimulated trials, but also to a lesser extent on
intervening trials in which stimulation was  not applied (Hampson
et al., 2012a, 2012b). Moreover, performance on non-stimulated
trials remained elevated for at least a week after stimulation was
terminated. Such improvements in behavioral performance were
also associated with increased prevalence of neural activity pat-
terns that had been found to underlie the successful encoding of
right or left lever presses on difficult trials (i.e., those with long
delays). While neuronal mechanisms of stimulation-induced plas-
ticity have not been directly investigated in the context of memory
restoration, a new computational framework described in this spe-
cial issue may  provide the capability to model long-term changes
in functional neuronal connectivity based on nonlinear, dynamic
associations between spiking patterns of multiple neurons (Song
et al., 2014). This computational modeling capability could provide
key insights for future investigations of the effects of BCI usage on
neural plasticity.

2.5. Reliable Neural Interface Technology (RE-NET)

With the remarkable success demonstrated under DARPA’s
BMI, HAND,  and Revolutionizing Prosthetics programs, the forma-
tion of multi-disciplinary research teams such as BrainGate, and
the advancement of BCI study at universities across the globe,
researchers began to notice that the longevity of their BCI study
capability varied dramatically. Initially, the vast majority of cortical
implants were used in acute animal studies aimed at understanding
and decoding brain activity. Some researchers transitioned from
acute to chronic studies and were able to maintain partial corti-
cal implant recording capability for years, while other researchers

experienced interface failures much earlier.

The neural prosthesis research community began to form initial
hypotheses as to the cause of these failures through histologi-
cal analysis of explanted devices and surrounding tissue (Biran
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t al., 2007; He and Bellamkonda, 2008). However, hypothesis
esting proved challenging given the large number of variables
o control, including surgical protocols, animal models, decoding
pproaches, and electrode technologies. Neural interfaces that are
nreliable present a significant challenge to the clinical translation
f these devices and can also delay progress in basic neuroscience
esearch. Therefore, understanding the mechanisms of these fail-
res became critically important. Today, overcoming interface
ailure is arguably the largest remaining hurdle that researchers
triving to understand and decode brain function must achieve.

ithout overcoming these issues, the vision of life-long BCI sys-
ems will remain just outside of reach.

The Reliable Neural Interface Technology (RE-NET) program was
stablished to identify and solve problems of extracting neural
nformation from the nervous system at the scale and rate nec-
ssary to control high-performance prosthetic-limbs for chronic
eriods of time (Judy, 2012). This DARPA effort contained three
eparate components designed to identify and eliminate inter-
ace failure. The first effort, Histology for Interface Stability over
ime (HIST), initiated in 2010, was developed to characterize and
uantify neural signal detection failure associated with chroni-
ally implanted electrode arrays. The Reliable Central nervous system
nterfaces (RCI) and Reliable Peripheral Interfaces (RPI) programs,
oth of which began in 2011, were aimed at preventing interface
ailures, advancing motor decoding performance of neural interface
echnologies placed in the brain, peripheral nerves, and muscles,
nd restoring somatosensory function.

The ability to detect neural activity is dependent on the quality
f the device. The HIST program evaluated both biotic and abiotic
evice failure modes, that is, the biological or tissue responses that
ay  be related to the disrupted or reduced ability to detect neural

ctivity (Karumbaiah et al., 2013; Saxena et al., 2013), as well as the
evice-related or system-related failures such as material, man-
facturing, or system interconnects (Prasad and Sanchez, 2012;
rasad et al., 2014).

RCI efforts developed and demonstrated novel materials, elec-
rodes, and interface systems to increase the reliability and
unctional duration of cortical interface systems (Tien et al., 2013).
dditional efforts under this program have focused on emulating
nd subsequently decoding motor control signals from functional
rain networks in order to control advanced prosthetic devices.
ne such effort, presented in this special issue, involved the devel-
pment of a novel virtual reality system for non-human primates
apable of emulating all the natural movements of a healthy limb
Putrino et al., 2014). This RCI outcome will enable researchers
o demonstrate reliable high-bandwidth control of unconstrained,

any-degree-of-freedom movements.
Restoration of function has long-been the leading goal of

esearchers developing novel medical devices. The RPI effort
mproved peripheral nervous system recording capability through
he use of penetrating and non-penetrating electrodes placed in
pinal and peripheral nerves. Additional developments by the RPI
rogram included novel peripheral interface devices, advanced
argeted muscle re-innervation techniques (Abidian et al., 2012;
aghmanli et al., 2013), new algorithms for on-line decoding of
otor control signals, and new methods for naturalistic sensory

ercept generation through modulation of peripheral nerve elec-
rical stimulation parameters. In this special issue, RE-NET RPI
esearchers describe the development of a peripheral interface sys-
em to record and stimulate at various locations across multiple
erves (Thota et al., 2014). In addition, one service member at Wal-
er Reed National Military Medical Center has become the first

mputee to receive implantable technology in effort to improve
ontrol of his prosthetic device. This work is planned for expansion
nd holds great promise for the future of prosthetic interface tech-
ology and the restoration of upper-limb function in amputees, as
ence Methods 244 (2015) 52–67

described by Pasquina et al. in this special issue (Pasquina et al.,
2014).

RE-NET efforts are projected to continue through 2015 and will
build on the momentum of the program with a heavy empha-
sis on demonstration of life-long neural interface systems. The
renewed focus on the peripheral nervous system has produced a
level of prosthetic control above projected capability. Peripheral
nerves and muscles are ideal targets for amputees since periph-
eral nerve surgeries are routinely performed in this population;
therefore, inclusion of nerve implants poses little added risk. Novel
approaches to record and stimulate sensory nerves are needed to
restore touch and proprioception. RE-NET will continue to cap-
italize on this momentum by developing advanced peripheral
interface devices with chronic, stable signal capture and decoding
capabilities. Moreover, these systems will provide amputees with
prosthetic sensory feedback to further improve sensorimotor con-
trol. Ultimately, these advances are intended to increase the extent
of embodiment of neurally controlled prosthetic devices so that
such devices will be widely accepted and utilized regularly by clini-
cal populations. Achieving this vision is the main thrust of DARPA’s
new Hand, Proprioception, & Touch Interfaces (HAPTIX) program
which is projected to begin in late 2014 and run until 2020.

3. DARPA BCI efforts to improve human training and
performance

While the DARPA-funded efforts featured above are focused on
development of BCI interfaces ultimately aimed at restoring neural
and behavioral function, DARPA has also made notable investments
in the development of BCI systems intended to improve training
and performance of healthy individuals. The Accelerated Learning
program has developed novel training paradigms, including those
leveraging BCI, to accelerate improvements in human performance.
The Narrative Networks (N2) program is developing new techniques
to quantify the effect of narratives on human cognition and behav-
ior, including initial development of a closed-loop BCI system that
adapts a narrative in response to a listener’s EEG signals. Such a
system would have numerous applications to training and human
performance domains. The Neurotechnology for Intelligence Ana-
lysts (NIA) and Cognitive Technology Threat Warning System (CT2WS)
programs both have utilized non-invasively recorded “target detec-
tion” brain signals to improve the efficiency of imagery analysis
and real-time threat detection, respectively. The Low-cost EEG
Technologies effort aims to develop more affordable EEG recording
systems, thus expanding the reach of BCI development opportu-
nities to a broader community of both professional and amateur
neuroscientists. These DARPA programs have funded scientific
advances that range from fundamental new discoveries about the
functions of the human brain to the development of new human-
in-the-loop systems that leverage non-invasively recorded neural
responses to optimize human performance.

3.1. Accelerated Learning

The Accelerated Learning program (2007–2012) sought to rev-
olutionize learning in the military environment through the
development of reliable and quantitative methods for measuring,
tracking, and accelerating skills acquisition. The program primar-
ily focused on detecting non-invasively measured neural and other
physiological correlates of task learning, with an end goal of pro-
ducing a two-fold increase in an individual’s learning rate. In Phase

I of the program, researchers conducted fundamental research to
identify neural correlates of task learning and to develop a proof
of principle that these findings could be leveraged to accelerate
learning. The methods used included neurophysiologically driven
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raining regimes, neurally optimized stimuli, and development
f feedback interventions delivered through a closed-loop BCI.
hase II focused on demonstrating a two-fold increase in the rate
f learning in a military population on an operationally relevant
ask. Complementary components that further aided in attaining
he goals of the program included development of neurally based
echniques for maintenance of acquired skills, prediction of skill
cquisition based on real-time neural activity, and the ability to
resent neural state status in the form of sensory feedback to accel-
rate an individual’s learning progression and thus improve human
erformance.

Efforts under Accelerated Learning demonstrated that it was  pos-
ible to leverage brain imaging, EEG, and other neurophysiological
easures to quantitatively characterize physiological states reflec-

ive of novice, intermediate, and expert levels of performance.
esearchers also succeeded in identifying specific brain regions,
ctivity patterns, and networks associated with the acquisition
f complex tasks, utilizing these findings to accelerate learn-
ng of those tasks by a factor of two. Relevant to this review,
dvanced Brain Monitoring, Inc. developed a suite of adaptive
nd interactive neuro-educational technologies (Interactive Neuro-
ducational Technology, or I-NET®) to accelerate skill learning
nd incorporated these tools into a closed-loop system known as
he Adaptive Peak Performance Trainer (APPT®) (Raphael et al.,
009). This system includes four main components: integration
f real-time EEG into closed-loop tutorials, identification of psy-
hophysiological characteristics of expertise using Advanced Brain
onitoring’s wireless EEG acquisition system (Berka et al., 2004),

evelopment of sensor-based feedback to deliver real-time physi-
logical state feedback, and identification of neurocognitive factors
hat are predictive of skill acquisition to enable early interventions.
ifle marksmanship training was used as the militarily relevant
ask, as it is a core military skill that involves both classroom
earning and field practice requiring sensory, motor, and cognitive
kills. The APPT® system incorporates knowledge of EEG, electro-
ardiography (ECG), respiration rate, and eye tracking signatures of
earning stages. The system can provide continuous physiological

onitoring and feedback (visual, auditory, or haptic) to the trainee
n real-time through integration of algorithms that derive physio-
ogical state changes based on sensor inputs. A preliminary study
uggests that use of the I-NET/APPT increased the learning trajec-
ory of novice participants by a factor of 2.3, compared to novice
articipants who trained with an identical protocol without the
PPT® (Behneman et al., 2012). Importantly, the system provides a
losed-loop BCI platform for assessing combinations of pre-training
nterventions designed to accelerate psychophysiological control
nd combat-relevant skills acquisition.

.2. Narrative Networks (N2)

Initiated in 2011 and anticipated to continue through 2015,
he N2 program was created to develop a quantitative approach
o the analysis of narratives and their influence on human cogni-
ion and behavior. Narratives exert a powerful influence on human
houghts, emotions, memories, and behavior, and can be particu-
arly important in security contexts (Casebeer and Russell, 2005).
hrough an improved basic understanding of narrative effects,
ools are being developed to detect brain activity associated with
arrative influence and to emulate this activity in the context of

arger environmental factors with models of narrative influence
n individual and group behavior. These tools will facilitate faster
nd better communication of information in foreign information

perations. To this end, one goal of the program is to create BCI tech-
ologies that close the loop between the storywriter and consumer,
llowing neural responses to a narrative stimulus to dictate the
tory’s trajectory. In this way, moment-by-moment neural activity
ence Methods 244 (2015) 52–67 61

would drive the subsequent story outcome, resulting in an indi-
vidualized narrative tailored by neural signatures associated with
cognitive processes such as attention and empathy.

Since the brain is the proximate cause of behavior, N2 has
focused much of its early research on understanding how stories
impact the brain. Using non-invasive brain imaging techniques
such as EEG and functional magnetic resonance imaging (fMRI),
researchers have detected various brain responses to particular
story elements and correlated these responses with emotional,
attitudinal, and behavioral effects in the story consumer. When
an individual listens to a compelling story, particular patterns of
EEG activity have been shown across individuals to correlate with
levels of sensory engagement, empathy, and narrative cohesion
in the listener. Similarly, while watching suspenseful video clips,
individuals display characteristic fMRI patterns that correlate with
moments of high narrative transportation, when the listener feels
more transported into the narrative world. These decoded patterns
of neural activity are correlated with behavioral changes induced
by the narrative. For example, investigators have predicted with
high accuracy whether or not an individual will donate to a given
charity after watching a related narrative, based on their neural
responses during the video.

In conflict resolution and counterterrorism scenarios, detecting
the neural response underlying empathy induced by stories is of
critical importance. N2 researchers have explored how narratives
can reinforce in-group and out-group memberships and induce
profound empathy gaps between members of these groups. In
exploration of the neural code representing physical pain and emo-
tional suffering, investigators used a series of 96 text-based stories,
which varied in the levels of physical pain and emotional suffering
experienced by the protagonist. While subjective ratings of pain
and suffering were highly correlated across the various stories, the
neural responses to these measures were distinct, even within the
pain network of the brain (Bruneau et al., 2013). Therefore, meas-
ures of neural activity may  give us a more precise window into the
feelings and emotions induced by narrative consumption.

Having detected a number of neural states associated with nar-
rative influence, investigators are using this information to develop
novel brain-in-the-loop systems to improve narrative creation and
delivery. Efforts by Advanced Brain Monitoring initiated under N2
include the development of a closed-loop BCI system that inte-
grates the human audience member into the storytelling process
by recording the story recipient’s EEG during presentation of a
narrative video. Brain activity recordings are outputted to the sys-
tem, and based on algorithms designed to detect the neural states
previously mentioned, the story is intended to branch into alter-
native scenarios when certain states reach threshold. For example,
if engagement levels drop below an optimal level, the narrative
would take an alternate branch designed to increase aspects of story
engagement. In this way, this narrative testbed could be used to cre-
ate optimal narratives tailored to a specific individual or group of
people. Notably, Advanced Brain Monitoring’s system is designed
to synchronize multiple users’ neural inputs into the closed-loop
system (Stevens et al., 2012), allowing for the potential to enable
group-level activity to influence the narrative outcomes. Clear
applications for this BCI technology exist not only for N2-related
goals but also in the education and entertainment industries.

3.3. Neurotechnology for Intelligence Analysts (NIA)

The goal of the NIA program (2005–2014) was to develop
new BCI systems utilizing non-invasively recorded brain signals

to significantly increase the efficiency and throughput of imagery
analysis. In recent years, operational technologies have been
developed that have exponentially increased collection and stor-
age capabilities of intelligence data, including overhead imagery
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Fig. 3. General workflow procedures implemented by the Neurotechology for Intel-
ligence Analysts BCI systems to detect targets of interest in satellite imagery. (1)
The analyst user is fitted with an EEG cap containing electrodes that non-invasively
record the analyst’s neural signals. (Photo courtesy of Neuromatters, LLC). (2) Over-
head imagery is divided into segments or “chips,” which are then (3) presented to the
user in rapid succession (0.5–10 images per second). (4) Each image chip containing
one or more targets of interest elicits a distinctive neural response in the analyst,
which is measured by the electrodes in the analyst’s EEG cap. (5) The NIA system
decodes the analyst’s neural signals and automatically prioritizes locations within
the image that are most likely to contain targets. Using standard imagery analysis
software, these image locations are presented to the analyst for review, validation,
and further annotation.
2 R.A. Miranda et al. / Journal of Ne

ollected via satellites and remotely piloted aircraft. The increase
n the availability of enormous imagery datasets has led to the chal-
enge of effectively searching through and analyzing the imagery
n a timely manner with limited analytical resources. The current
perational procedure for broad area search for targets in over-
ead imagery is an extremely time- and labor-intensive brute force
ethod, and current computer vision approaches to imagery anal-

sis are nowhere close to matching the target detection capabilities
f the human visual system.

The neuroscientific basis of the BCI systems developed under
IA is that, upon seeing a target of interest, a unique set of neu-

al responses, including an event-related potential known as a
P300,” is elicited in a person’s non-invasively recorded EEG. This
300 response is typically observed approximately 300 ms  follow-
ng presentation of a target image and appears as a positive-going
eflection in the EEG signal, compared to the signal elicited by
on-target images. Neural signatures of target detection have been
bserved in response to targets in images presented sequentially at
apid rates of up to 20 images per second (Sajda et al., 2003). At such
ast presentation rates it is not feasible to match target images with
ehavioral responses such as button presses, which are generally
lower than 300 ms  and quite variable in response time.

The NIA systems encompassed a “human-in-the-loop” approach
hat leveraged the use of new decoding algorithms to detect neu-
al signatures of target detection on a single-trial basis (see Fig. 3).
atellite images were divided into small segments and then pre-
ented to imagery analysts at rates between 0.5 and 10 images per
econd while the analysts’ brain responses were measured with
EG (Qian et al., 2009; Sajda et al., 2010; Macdonald et al., 2011). The
IA systems’ decoding classifiers were designed to automatically
etect spatiotemporal features within the EEG signal associated
ith viewing targets as compared to non-target images. Addition-

lly, the NIA target detection classifiers integrated computer vision,
ye-tracking data, and/or EEG correlates of attention. Based on out-
ut from the systems’ classification algorithms, image segments
ere either given a prioritization score based on their calculated
robability of containing a target, or marked as potential target

mages based on the classifier’s threshold levels of brain responses.
atellite imagery locations most likely to contain targets were then
resented back to the user for final verification and assessment.

mportantly, given that target detection brain responses are largely
ndependent of target type or modality, the BCI systems developed
nder the NIA program are able to immediately adapt to changes in
perational requirements, such as searching for new and/or mul-
iple classes of targets in different imagery modalities. Thus, the
IA approach eliminates the need for cumbersome system param-
ter adjustments required for detection of new types of targets by
ystems relying solely on computer vision approaches. In a series
f formal evaluations conducted on three of the NIA systems with
ver 40 professional imagery analysts in 2008–2009, use of the NIA
ystems resulted in up to a 10-fold increase in analysis through-
ut (area of imagery analyzed per unit time) with no loss of target
etection sensitivity, as compared to the analysts’ performance
sing their standard imagery analysis approaches.

.4. Cognitive Technology Threat Warning System (CT2WS)

Like the NIA program, CT2WS,  initiated in 2007, funded the
evelopment of a non-invasive BCI system that detects the human
ser’s “target detection” brain responses including the P300, as
easured by EEG (Khosla et al., 2011; Weiden et al., 2012). Rather

han detecting targets in overhead imagery, however, the goal

f CT2WS is to detect potential threats during real-time surveil-
ance operations. For the purposes of demonstration, the program
ocused on surveillance from a forward operating base, for which
hreats included vehicles (mounted forces) and individuals on foot



R.A. Miranda et al. / Journal of Neuroscience Methods 244 (2015) 52–67 63

F S BCI s
s EG ca
r

(
a
o
s
v
a
2
p
t
s
t
u

t
w
b
a
M
o
r
h
S
fi
o
e
p
t

F
I
R
D

ig. 4. Equipment used to demonstrate threat detection performance of the CT2W
urveillance video with 120-degree field-of-view and 120-megapixel resolution. (b) E
ecord operators’ neural activity while viewing rapidly presented visual stimuli.

dismounted forces). The system, developed by a research team
t HRL Laboratories, LLC, utilizes advanced flat-field, wide-angle
ptics and high pixel-count digital imagers to record real-time
urveillance video (Huber et al., 2013). Neuromorphic computer
ision algorithms designed to emulate the brain’s visual system
re used to detect potential threats within the video (Khosla et al.,
013). The system then presents still frames containing these
otential threats in rapid succession to the user (a method referred
o as Rapid Serial Visual Presentation or RSVP). The user’s neural
ignals enable further classification of potential threats; when a
hreat is detected, a visual cue is provided to the user, alerting the
ser to focus on that image.

During a weeklong evaluation at Camp Roberts, CA in 2012, the
hreat detection performance of the CT2WS system (four cameras
ith a 120-degree field-of-view, see Fig. 4) was compared side

y side to the performance of the Cerberus Scout, a state-of-the-
rt commercial surveillance system used in theater by Army and
arine Corps units. The CT2WS system demonstrated a probability

f threat detection almost twice that of the Scout (91% and 53%,
espectively), and an extremely low rate of five false alarms per
our out of more than 2300 events per hour (not measured for
cout, but substantially higher). Also in 2012, a pilot study with
ve subjects indicated that using the CT2WS system reduced the

perator workload (measured by the mean for the NASA-TLX cat-
gories of mental demand, physical demand, temporal demand,
erformance, effort, and frustration) by a factor of two compared
o the unaided eye.

ig. 5. Three dry-electrode EEG caps designed and tested under the CT2WS program. (Left)
nc.  (ABM), with 24 standard wet sensors replaced with semi-dry, hydrogel-based sensor
esearch, Inc. (QUASAR), containing 20 hybrid resistive-capacitive dry-electrode sensors.
iego  (UCSD), containing 32 dry-electrode sensors in a soft, adjustable headset.
ystem at Camp Roberts, CA in 2012. (a) A four-camera system recorded real-time
p (Advanced Brain Monitoring B-Alert X24, 20 EEG channels) used to non-invasively

The CT2WS program is also funding the development of dry-
electrode EEG headsets that would improve the usability of
fieldable BCI systems for applications such as threat detection
(described above). Traditional EEG headsets rely on conductive
paste, gel, or saline solution to non-invasively record the brain’s
electrical signals. As a consequence, these devices are often cum-
bersome to apply and unappealing to the user, given the wetness or
residue that remains on the user’s scalp and hair following removal
of the headset. Off-the shelf, dry-electrode headsets have been pre-
viously developed, primarily for the gaming industry; however, the
signal-to-noise ratio of these systems is too low to reliably detect
many EEG components of interest for neuroscience efforts aimed
at improving human training and performance, particularly when
single trial analysis is required. Additionally, currently available
dry electrode headsets are often more susceptible to interference
such as motion artifacts, compared to systems utilizing paste, gel,
or saline. The CT2WS program developed three novel dry-electrode
EEG headsets (see Fig. 5), all wireless, with sensor channels ranging
in number from 20 to 32, and weight ranging from 40 to 635 g (Chi
et al., 2012, 2013; Davis et al., 2013; Halford et al., 2013). Empirical
tests of the dry-electrode headsets and a wet-electrode baseline
system compared P300 response performance on image stimuli,
“oddball” image stimuli, video stimuli, steady state visually evoked

potential, auditory evoked potential, and artifacts including eyes
open, eyes closed, blinks, and jaw clench. All three systems corre-
lated reasonably well to the baseline. Further research and develop-
ment is needed to optimize system robustness to motion artifacts.

 B-Alert X24 Wireless EEG Headset System designed by Advanced Brain Monitoring,
s. (Middle) Dry-electrode EEG system developed by Quantum Applied Science and

 (Right) EEG system developed by researchers at the University of California at San
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.5. Low-cost EEG Technologies

The CT2WS effort demonstrated that dry-electrode head-
ets enable collection of EEG data with high signal-to-noise
atios, suitable for research grade data collection. However, these
utting-edge systems are typically too expensive and difficult for
on-neuroscientists to use. In the last few years, commercial com-
anies have developed lower-cost EEG headsets, but these systems
ften have poor signal-to-noise ratios or encrypt the data stream,
equiring substantial investment to gain full data access. In 2013, a
ARPA SBIR program was launched to address this EEG cost, data
uality, and usability gap. The goal of this SBIR effort is to facilitate
rain-in-the-loop research by developing a low-cost ($30, price of
arts), research grade EEG system and accompanying software to
nable usage by non-neuroscientists. Such a system would allow
or large-scale crowdsourced neuroimaging research, not currently
easible. The neuroscientist community has leveraged crowdsourc-
ng for large volume imagery data analysis with projects such as
yeWire and KNOSSOS (Marx, 2013). Likewise, the psychologist
ommunity has leveraged crowdsourcing for large volume survey
nd behavioral data collection with tools like Amazon’s Mechan-
cal Turk and Qualtrics. A $30 EEG system would enable similar
rowdsourcing data collection efforts for neuroimaging as well.

Development to date has focused on a number of different
pproaches. With regard to the sensors, teams have explored 3-D
rinting of dry electrodes directly to the headgear. For electron-

cs development, others have adopted a completely open source
pproach to the design, iterating with the citizen scientist com-
unity for improved electronics’ designs. Still others have created

ugmented reality software and apps to aid in the donning and use
f the EEG devices.

This SBIR effort is anticipated to continue through 2015 and aims
o develop a truly enabling technology. With respect to the Presi-
ent’s BRAIN initiative, novel BCI technologies are needed that not
nly extend what information can be extracted from the brain, but
lso who is able to conduct and participate in those studies. Appli-
ations exist not only in the crowdsourced neuroscience domain,
ut also in education, entertainment, and a myriad of possible BCI-
elated projects.

. Future efforts and challenges for brain–computer
nterface technologies

Given the latest advances in brain–computer interfaces, a num-
er of challenges remain in optimizing the capabilities, robustness,
nd usability of such systems, including the development of BCI
evices for human use. One needed capability advancement is the
evelopment of enhanced recording techniques that enable real-
ime measurements of neural activity and structure across a wide
ange of spatial scales (from one to millions of neurons) and tem-
oral scales (from milliseconds to years). A new DARPA program
ntitled Neuro Function, Activity, Structure, and Technology (Neuro-
AST) aims to develop novel optical methods to enable real-time
unctional recording of thousands of neurons, with single-neuron
esolution, in awake, behaving animals. Likewise, to effectively
mplement BCI systems for clinical use by individuals with less
evere clinical cases or who are unwilling to undergo the risks
f neurosurgery, or for enabling efficient performance by healthy
sers, there exists a need for the development of subcutaneous
nd fully non-invasive neural interfaces that are both portable and
apable of recording activity from cortical and deep brain structures

t high spatial and temporal resolution.

As new technologies enable progressively more neural, physio-
ogical, and behavioral data to be collected, the need for improved
omputational processing and mathematical dimensionality
ence Methods 244 (2015) 52–67

reduction techniques will increase exponentially in order to
facilitate effective analysis and use of the data. These needs
are especially essential for closed-loop BCI systems that rely on
automated, real-time analysis of recorded neural signals. Effective
analysis and integration of data across research groups will also
require revolutionary new approaches to data sharing, including
standardization of protocols and data formats, ability to effectively
merge data across multiple modalities and scales, and incentive
structures that promote sharing of data and collaborative efforts
across individual laboratories. Notably, for new efforts under
DARPA’s brain function research portfolio, high priority is being
placed on the sharing of newly developed protocols and resulting
data. While DARPA has long placed an emphasis on collaboration
across multi-disciplinary research teams, selection criteria for
new efforts also include requirements for sharing data among
DARPA-funded teams, as well as making data available to the
broader scientific research community at an accelerated pace.

With respect to the ultimate goal of transitioning BCI systems
for chronic use by humans, the need for robust interface hardware
and computational models – beyond the advances made by the
DARPA-funded programs described above – is becoming increas-
ingly important. Implanted neural interface hardware must remain
functional and biologically compatible over years and even decades
to reduce the need for multiple surgical procedures. Addition-
ally, these systems should enable the application of new software
updates without requiring surgical removal of implanted hardware.
While surgical risks are not applicable to non-invasive BCI hard-
ware, non-invasive systems are associated with a distinct set of
challenges, including the need to minimize system set-up time, as
well as the need for robustness in changing environmental con-
ditions and against variation in sensor placement across multiple
uses. Computational model components of BCI systems should be
compatible with neural plasticity over chronic use and should func-
tion across various contexts and associated brain states, without the
requirement for extensive and/or frequent calibration procedures.
The systems must also remain robust in the midst of external inter-
ference, such as electrical interference (e.g., while using a mobile
phone), and must include sufficient safeguards to prevent deliber-
ate interference by unauthorized individuals.

While a majority of state-of-the-art, closed-loop BCI systems
translate recorded neural signals into functions performed by a
machine – for instance, the movement of a computer cursor or
robotic limb – recent BCI efforts have begun to utilize recorded neu-
ral activity to generate feedback signals that are delivered directly
to the user through stimulation of muscles, nerves, or the brain
itself. Advances in both invasive and non-invasive neural interfaces,
as well as computational models, are needed to enable precisely
targeted stimulation with high spatial and temporal resolution to
the brain or periphery of humans to enable (1) substitution for lost
sensory inputs (e.g., prosthetic sensation of touch for amputees),
(2) immediate correction of dysfunctional networks (e.g., abnor-
mal  neural firing detection and mitigation), and (3) long-term
restoration of healthy functional networks through leveraging of
the brain’s natural plasticity mechanisms.

Two new programs under DARPA’s brain function research port-
folio were established in 2014 to quantitatively characterize the
complex neuronal networks underlying both healthy and aber-
rant cognitive and behavioral function, and to develop devices
that deliver advanced therapeutic neural stimulation to human
clinical populations. The Systems-Based Neurotechnology for Emerg-
ing Therapies (SUBNETS) program aims to address the problem
that state-of-the-art methodologies for treating complex neu-

ropsychiatric and neurologic disorders involve imprecise surgical,
pharmacological, psychotherapy, or deep brain stimulation (DBS)
approaches that are implemented through a slow, trial-and-error
based process. This is a particular challenge for the U.S. military,
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s in recent years, veterans receiving mental health care from the
epartment of Veterans Affairs (VA) have constituted almost a

hird of the total number of veterans receiving health care from
he VA (U.S. Government Accountability Office, 2011). The SUB-
ETS program will attempt to develop novel neural interfaces
nd therapeutic approaches for human patients with intractable
llnesses by developing fully implantable medical devices for multi-
ite, systems-based neural recordings, deriving new computational
odels to characterize the distributed neural interactions that

nderlie a variety of neuropsychiatric and neurological condi-
ions, and delivering safe, targeted therapeutic neural stimulation
hrough closed-loop BCI.

The vision of DARPA’s Restoring Active Memory (RAM) program
s to develop computational models that quantitatively character-
ze the biological underpinnings of the complex organization of

emories in the human brain, and to integrate these models into
 therapeutic device for targeted memory restoration in human
atients with intractable illnesses who are suffering from memory
eficits. This clinical population is highly relevant to the U.S. mili-
ary, given that traumatic brain injury frequently results in deficits
n retrieving memories formed prior to the injury and/or form-
ng and retaining memories of new experiences following injury
nset. The RAM program focuses on restoring declarative mem-
ries – the memories of facts and events that can be explicitly
ecalled. To achieve the goal of declarative memory restoration,
he RAM program aims to fund the development of new neural
nterface hardware that can target multi-scale neural underpin-
ings of declarative memory in human patients with high spatial
nd temporal resolution. It is anticipated that the data collected via
hese neural interfaces will be leveraged to develop and validate

athematical algorithms that characterize the neural correlates of
uccessfully (and unsuccessfully) encoding and/or retrieving spe-
ific types or attributes of memory. The computational models
eveloped under RAM are envisioned to be integrated into a closed-

oop BCI system that can restore specific types or attributes of
emory through the use of targeted neural stimulation.
As both SUBNETS and RAM involve the application of new tech-

ologies to human clinical populations, DARPA has been working
losely with the FDA. These collaborations between DARPA and the
DA have led to new innovation pathways for device development
U.S. Food and Drug Administration, 2011a, 2011b). Continued
nteraction among government agencies, clinical investigators, and
echnologists are expected to facilitate the establishment of a
ariety of new indications, outcome metrics, and endpoints for
europrosthetic devices.

DARPA is committed to ensuring that the efforts it funds follow
ll laws and regulations designed to protect humans and animals
nvolved in scientific research. In addition, DARPA has estab-
ished a panel of individuals with expertise in ethical, legal, and
ocietal implications (ELSI) of neuroscientific research to reflect
n and inform DARPA efforts in this domain, and to facilitate
ommunication between DARPA and relevant stakeholder com-
unities including the neuroscience and bioethics communities.

LSI panelists consider the potential downstream implications
f agency-funded neuroscientific developments, including those
elating to safety, privacy, foreign policy and security (see, e.g.,
asebeer, 2013, for a framework discussion), recognizing that some
uch implications may  unfold over years or even decades following
ARPA’s initial investments. More broadly, the agency is com-
itted to fostering public awareness and understanding of the

otential applications of its efforts to advance neuroscience tech-
ologies and the field of BCI.
The future of brain–computer interfaces depends upon multi-
isciplinary collaborations among neuroscientists, psychologists,
linicians, engineers, and mathematicians, and upon ongoing
ommunication with relevant stakeholder communities including
ence Methods 244 (2015) 52–67 65

regulators, physicians, and patients. Effectively bringing together
these diverse fields and communities will facilitate the devel-
opment of new tools to measure, quantify and model dynamic,
multi-scale brain activity and will ultimately lead to novel ther-
apeutic regimens and training paradigms capable of restoring and
improving neural, cognitive, and behavioral function.
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