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Abstract: Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding
chemical, electrical, material, optical, and physical properties due to its large surface area, high
electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make
it a key component for different applications in the biosensing and imaging arena. However, the use
of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations,
less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold
nanostructures (AuNS) with graphene produces the graphene–AuNS hybrid nanocomposite which
minimizes the limitations as well as providing additional synergistic properties, that is, higher
effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility.
This review focuses on the fundamental features of graphene, the multidimensional synthesis,
and multipurpose applications of graphene–Au nanocomposites. The paper highlights the
graphene–gold nanoparticle (AuNP) as the platform substrate for the fabrication of electrochemical
and surface-enhanced Raman scattering (SERS)-based biosensors in diverse applications as well
as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell
differentiation, and detection and treatment of cancer.

Keywords: graphene; graphene–gold nanoparticle; electrochemical biosensor; SERS
biosensor; bioimaging

1. Introduction

The advent of graphene, a perfect two dimensional (2D) material, composed of single-atom-thick
sheets of sp2 bonded carbon atoms packed into a honeycomb lattice, has opened up the exciting new
horizon of the carbon era in the field of science and technology. From its discovery in 2004 by Geim
and Novoselov [1], graphene has attracted increasing attention due to its excellent properties and
applications in diversified fields [2,3]. Owing to its structural features, graphene is characterized by a
number of unique and extraordinary structural, optical, and electronic properties (Table 1) [4] with
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mesmerizing transport phenomena such as the quantum Hall effect [5], optical transmittance, and
fluorescence quenching ability [6]. Graphene is a zero-band-gap semiconductor and demonstrates high
electron mobility under ambient conditions, [7] which is advantageous in sensors, super capacitors,
and electrocatalysis application. The high optical transparency of graphene nanocomposites pushes
forward the fabrication of transparent conductive films [8,9] for application in solar cells, advanced
electronics etc. All of these properties make graphene an ideal building block in the fabrication of
nanocomposites. Graphene nanocomposites also show high thermal conductivity that provides
excellent thermal stability, which is important in some electronic devices or catalytic reactions that
release heat, such as fuel cells and lithium-ion batteries.

Table 1. General properties of grapheme.

Properties Value References

Optical transmittance ~97.7% [6]
Density 0.77 mg¨ m´2 [10,11]

Career density 1012 cm´2 [10,11]
Resistivity 10´6

Ω¨ cm [10,11]
Planar surface area 2630 m2

¨ g´1 [12]
Mechanical strength of its Young Modulus 1100 GPa [13]

Fracture strength 125 GPa [13]
Thermal conductivity ~5000 W¨ m´1

¨ K´1 [14]
Mobility charge carrier 200,000 cm2

¨ V´1
¨ s´1 [15]

Before graphene, another carbon nanomaterial, carbon nanotubes (CNTs), were of great interest
in the fabrication of nanocomposites in biosensor applications [16,17], however, the preference for
this material seems to have declined with the emergence of graphene due to its easy availability and
some other advantageous properties in comparison to CNTs [18]. Graphene has a unique basal plane
structure to load microspheres of several hundred nanometers in diameter, which presents a benefit
over CNTs for nanomaterial decoration (Figure 1) [19]. Its 2D structures make it plausible to synthesize
graphene-based nanocomposites by novel synthesis methods such as thermal decomposition of
intercalated graphene precursors, which is a challenge in the case of CNT-based nanocomposites [20,21].
The higher surface area of graphene improves interfacial contact with the other components in
comparison to CNTs and can prevent the accumulation of secondary components, thus preserving
some unique properties in the nanoscale level [22]. In addition, graphene has no metallic impurity,
which is the major drawback of CNTs in biosensor applications, and hence can be easily integrated
into complex sensors or other devices through conventional microfabrication approaches. Conversely,
the one-dimensional nature of CNTs creates difficulty in controllably assembling integrated electronic
architectures on them.

−

−
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−

− −

− −

 
Figure 1. (a) Decoration of AuNPs on graphene. Adapted from [23], with permission from
©2011 American Chemical Society; (b) Covalent attachment of AuNP on CNT. Adapted from [24],
with permission from ©2011 American Chemical Society.
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Nanocomposites consist of multiphase materials wherein one phase (dispersed phase) in nanosize
form is dispersed in a second phase (matrix/continuous phase), with the ensuing combination of the
individual properties of the component materials [25]. Graphene–inorganic metal and metal oxide
nanocomposites are now substrates of interest due to their advantageous properties in diversified
fields of application. In some instances, these composites not only overcome the limitations of the
usage of a single component in biosensor applications but also provide higher effective surface area,
excellent catalytic properties, higher specificity, limit of detection (LOD), etc. For example, individual
sheets of graphene have a tendency towards irreversible self-agglomerations [26] by van der Waals and
π-π stacking interactions, which may partially reduce their electrochemical properties. The addition of
a second component (noble metal nanoparticles) acts as a nano-spacer and conductor, hence increasing
the graphene interlayer distance to minimize the agglomeration, making both faces accessible and
improving the electrical conductivity [27,28].

Direct immobilization of biomolecules (proteins) onto CNTs [29] or graphene oxide (GO) [30] has
been proved unstable, therefore frequently applied washing steps in biosensor fabrication can readily
remove proteins. Consequently, this presents undesirable effects, such as poor reliability/repeatability
and non-specificity of the sensor. Graphene–nanoparticle hybrid structures offer a number of
highly desirable and markedly advantageous additional unique physicochemical properties and
functions in bio-applications in comparison to either material alone [31]. Among the noble metal
nanoparticles, AuNPs are one of the most studied nanomaterials, due to their remarkable surface
chemical properties [32], higher chemical stability, excellent catalytic activity [33], biocompatibility [34],
and other notable properties. These properties make AuNPs a model component for the detection
of DNA [35–37] and proteins [38], rapid identification of microorganisms [39], and differentiation of
cancer patients from healthy individuals [40].

Therefore, it is highly expected that extraordinary outputs can be achieved using the fabricated
graphene–AuNPs composites in numerous applications. In this regard, AuNPs/reduced graphene
oxide (rGO) composites comply by offering around 2.3 times superior electrocatalytic current
density [41], and stronger Raman signals from Rhodamine 6G (R6G) absorbed on the nano-composites
than individual pure AuNPs [42]. In addition, the presence of Au and Ag nanostructures (AgNS) on
graphene increases the SERS by factors of about 45 and 150, respectively, than graphene alone [43].
This review emphasizes the wide-ranging synthesis and fabrication procedures of graphene–AuNPs
hybrids, their application as a fundamental component for the electrochemical and SERS-based
biosensor, as well as SERS-measured bioimaging.

2. Fabrication of Graphene–Gold Nanocomposite

Considering the unique and advantageous properties of GO and its derivatives—graphene and
rGO, efforts have been made to utilize these materials either by themselves, or in conjunction with other
nanomaterials. On the basis of structural features, graphene nanoparticles can be broadly categorized
into two main classes: AuNPs-embedded graphene nanocomposites and graphene-encapsulated
AuNPs. This section introduces the methods used to produce graphene, GO, and rGO, and presents an
in-depth analysis of the various synthesis methods of graphene–nanoparticle hybrids with particular
emphasis on graphene–AuNPs. A schematic representation of the synthesis of graphene–AuNPs
composites is drawn in Figure 2.
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Figure 2. Schematic representation of the formation of graphene–AuNPs nanocomposites. 
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Figure 2. Schematic representation of the formation of graphene–AuNPs nanocomposites.

2.1. Synthesis and Functionalization of Graphene

Graphite oxide, formerly called graphitic oxide or graphitic acid, is the layered structure of GO
sheets obtained by treating pristine graphite with strong oxidizers. Chemically, graphite oxide is similar
to GO while very different structurally. The material is exfoliated into monolayers or a few layered
sheets retaining a rather stacked structure [44] (Figure 3). This exfoliation to colloidal suspension
of GO sheets in water or organic solvents is generally mediated by simple sonication [45,46] and by
stirring for a longer period of time [47]. Graphite oxide and GO are electrically insulating materials
due to their interrupted sp2-bonding networks, hence conductivity can be regained by rearranging
the π-network by the reduction of GO. The product of this reaction is termed differently either as
graphene, rGO, or chemically reduced graphene oxide (CR–GO). rGO is the most common product
among the synthesized chemically modified graphene which is generally attained by graphite oxide
exfoliation–chemical reduction pathway [48]. Nowadays, most graphene-based nanocomposites are
considered desired hybrid materials, employing graphite oxide as the initial material. Till now, a lot
of articles as well as reviews have been published on the different synthesis techniques of graphene,
highlighting different properties including dimensions, layers, conductivity, quality, cost effectiveness,
and so on [49–52]. Methods include micromechanical exfoliation [1], chemical vapor deposition
(CVD) and epitaxial growth [53,54], epitaxial growth on electrically insulating surfaces [55–57],
colloidal suspension from graphite or graphite derivatives [46,58], longitudinal “unzipping” of
CNTs [59,60], and chemical, electrochemical, or thermal reduction of GO [26,61,62]. Here, we present a
comparative study (Table 2) of the methods that are scalable as well as mostly employed in research
and bio-applications.
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Figure 3. Schematic representation of the synthesis of chemically modified graphene. Adapted
from [63], with permission from ©2012 Royal Society of Chemistry.

Graphene nanosheets can be functionalized, in some instances, to attain high specificity, greater
loading capacity, solubility, stability, and biocompatibility [64]. Generally, this can be achieved by either
covalent bonding of the functional molecules between the basal planes and edges of GNs or noncovalent
adsorption via hydrogen bonding [65], π-π stacking [66], electrostatic interactions, and van der Waals
attractions [67]. The expected property of graphene nanosheets (GNs) can be attained by creating covalent
hydroxyl (-OH) or carboxyl (-COOH) groups, treating with strong acid/oxidants, sulfonate (-SO3, -SO3H)
and amino groups on the graphene surface, immobilizing linker molecules such as pyrenebutyric acid
and molecules with an aromatic tail or a reactive end [64], and by adding polymers [68,69] or small
molecules [70,71]. Thus functionalization turns graphene/GO into a versatile precursor for a wide range
of executions, such as boosting the solubility of graphene in various solvents [71,72], augmenting the
capability to adhere to nanomaterials or disperse in matrices [73], and improving the manipulation and
processing aptitude of graphene for the fabrication of different devices [74].

Table 2. Advantages and limitations of the major synthesis procedures of grapheme.

Synthesis Procedure Beneficial Aspects Limitations References

Micromechanical
exfoliation

‚ Simple process.
‚ Few defects.
‚ Excellent quality of graphene.
‚ Well suited for fundamental research.

‚ Poor reproducibility.
‚ Not amenable for large

scale production.
[49,75,76]

CVD

‚ Large area (up to ~1 cm2).
‚ Limited number of defects.
‚ Mass production.
‚ High quality graphene.

‚ Expensive.
‚ Poor scalability.

[49,53,77,78]

Epitaxial growth
‚ High quality of graphene.
‚ Few defects.

‚ High cost.
‚ Requires high temp.

[49]

Colloidal suspension

‚ Scalable.
‚ High volume of production.
‚ Suitable for multipurpose

chemical functionalization.

‚ Significant number of defects. [79]

Unzipping of CNTs

‚ Scalable with controlled widths and
edge structures.

‚ Better control over chemical
functionalization and edge quality.

‚ Low yield.
‚ More expensive in respect to

chemical exfoliation of
graphite or graphite oxide.

[49,60]

Reduction of GO ‚ Economical and facile technique. ‚ Significant number of defects. [76,79,80]
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2.2. Synthesis and Functionalization of Graphene–Gold Nanoparticles

In a broad sense, the synthesis of graphene–AuNPs hybrids can be categorized into two basic
categories. The principal approach entitled the in situ technique (Figure 4a) involves the formation
of nano crystallites in the presence of pristine or functionalized GNs followed by the direct growth
of nanostructures onto the graphene surfaces; while the other technique, termed ex situ, (Figure 4b,c)
comprises the preceding synthesis of nanomaterials in the desired sizes and shape, followed by
modification and subsequent attachment to the surface of functionalized GNs [25,76]. Under these
two broad titles, there are many different synthesis techniques which are illustrated in Figure 5.
Furthermore, beneficial aspects as well as limitations of the major synthesis procedures of graphene–Au
nanocomposites are summarized in Table 3.






 

Figure 4. TEM image of GO–AuNPs composites (a) in situ growth, adapted from [81], with 

π π

Figure 4. TEM image of GO–AuNPs composites (a) in situ growth, adapted from [81], with permission
from ©2014 Nature Publishing Groupand (b) and (c) ex situ decoration of 20 nm and 40 nm AuNPs on
GO sheets respectively, adapted from [82], with permission from ©2010 Royal Society of Chemistry.
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Figure 5. Schematic diagram of the graphene–AuNPs synthesis procedures.
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Table 3. Advantages and limitations of the major synthesis techniques of graphene–gold nanocomposites.

Synthesis
Techniques

Advantages Limitations References

In situ reduction

‚ One-pot synthesis.
‚ Efficient, easy to perform, and

cost effective.
‚ Generally, no need of protecting

surfactant or extra linker molecule.
‚ Can be employed by a lot of physical and

chemical synthesis methods.

‚ Hard to control the size and
morphology of AuNPs in the
resulting composite.

[25,83,84]

Ex situ

‚ Prior synthesis of nanoparticles ensures
good control over morphology, size,
distribution and density of AuNPs
on graphene.

‚ Requires more time and steps. [76,82,84]

Hydro-thermal
‚ Synthesis of nanoparticles with high

crystallinity and narrow size distribution.
‚ High production efficiency.

‚ Requires high temp. and long
reaction times, which may
cause partial or complete
reduction of GO.

[85–87]

Electro-chemical

‚ Cost effective, robust and in most cases
it’s a green approach.

‚ Morphology and size of the AuNPs can be
fine-tuned by adjusting the
electrodeposition potential, time and
concentration of precursor solution.

‚ Normally involves
multiple steps. [41,88–92]

2.2.1. In situ Synthesis of Graphene–Gold Nanoparticles

Simultaneous Reduction

The common path of graphene–AuNPs synthesis is the synchronous reduction of Au metal
precursors and GO in a mixed solution. The fundamental principle is that the functionalities on GO
or rGO surfaces cause the attachment of free metal ions through electrostatic interactions while the
addition of a reducing agent expedites the coupling of metal ions. The spontaneous reduction of
Au ions in the absence of any reducing agent and linker molecule to form layer-by-layer (LBL)
films of alternating graphene and AuNPs has also been shown. This simple and cost-effective
method produces more electrically conductive rGO than GO sheets [93]. In another method,
both AuNP precursors and GO are reduced individually with the addition of different reducing
agents [94]. The functionalization of GO or its derivatives has also been observed by adding
external molecules for better output [69], dispersion, size distribution, or even stability of the
AuNPs [95,96]. Commonly used functionalizing agents include—octadecylamine (ODA) [95], 1-pyrene
butyric acid [96], tannic acid [97], pyrene ethylene glycol amine or decyl pyrene [69], sulfur [98],
and others. On the contrary, however less frequently, functionalization of the AuNPs to accelerate the
reduction process has also been observed [83]. Different synthesis approaches along with different
reducing, functionalizing, and stabilizing agents or conditions are summarized in Table 4.

Microwave-Assisted Deposition

Microwave irradiation triggers the uniform and prompt heating of reaction mixtures, thereby
allowing simultaneous reduction of GO and metal ions, resulting in the rapid formation of Gr–AuNS.
Therefore, nanoparticles of very little size with narrow size distribution can be achieved [99].
For instance, Hu et al. [100] reported a GNs–Au nanocomposite by microwave irradiation and
Jasuja et al. [101] evidenced in situ synthesis of multiple shaped bare-surfaced AuNPs on GO
sheets by applying microwave exposure without any reducing agents and stabilizing molecules.
Simultaneous chemical reduction of GO to rGO with the formation of AuNPs nanosheets in presence
of ascorbic acid [102] and prior functionalized GNs with polyethyleneimine and HAuCl4 to prepare
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Gr-AuNPs [103] were also reported. Microwave exposure strength as well as other parameters are
mentioned in Table 4.

Sonication-Assisted Deposition

High-frequency ultrasound reduction methods are being considered as an expedient and clean
approach for the synthesis of Gr–AuNPs nanocomposites. For example, Park et al. reported the
synthesis of rGO–AuNPs nanocomposites by simultaneous reduction and deposition of AuNPs onto
the surface of rGO by ultrasonic irradiation. Here, the attachment of AuNPs onto the rGO surface is
mediated via the electrostatic attraction of Au ions to oxygen functionalities on the rGO surface [104].
On the other hand, Vinodgopal et al. [105] reported simultaneous and sequential reduction of GO
and HAuCl4 in 2% polyethylene glycol aqueous solution to fabricate rGO–Au nanocomposites by
maintaining an ultrasonic frequency of 211 kHz.

Photo-Assisted Deposition

Photo-assisted deposition is a green technique which creates a uniform reducing environment
in solution without the need for any additional reagents. For example, GO–gold nanorods (AuNRs)
synthesis by the one-pot one-step method was achieved by UV light irradiation (256 nm, 30 W)
for 25 min in a quartz tube [106]. Huang et al. [107] reported one-pot synthesis of Au nanodots
(AuNDs) on rGO nanosheets by photochemical reduction of HAuCl4 in the presence of octadecanethiol.
Another group of scientists prepared ultrathin gold nanocrystals (AuNCs) on a co-reduced GO surface
by photo irradiation (LEDs with continuous stirring) in the absence of chemical reductants and
surfactants [108]. Also, photo-aided synthesis of graphene–AuNPs was employed to grow AuNPs in
AuCl4´ electrolyte [109]. This convenient and reliable method has ensured a steady growth rate of
AuNPs with well-controlled distribution by using focused laser light.

Radio Wave-Assisted Deposition

Pruneanu et al. [110] employed the radio frequency (1.2 MHz, 5 kW) CVD method to synthesize
multi-layered graphene–AuNPs composite by using Au/MgO catalyst (1 wt % Au).
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Table 4. Summary of the different synthesis approaches of graphene–gold nanocomposites.

Name of the Synthesis Process
Name of the Final
Graphene–Gold Hybrid

Gold—Functionalizing Agent
(FA)/Stabilizing Agent (SA)/Reducing
Agent (RA)

Graphene—Functionalizing Agent
(FA)/Stabilizing Agent (SA)/Reducing
Agent (RA)/Reduction Process (RP)

References

Seeded-growth
simultaneous reduction rGO-AuNPs Sodium citrate (FA), NaBH4 (RA) GO–rGO via redox chemistry of GO &

Au Precursors (RP) [111]

Sequential reduction method N2 doped graphene-AuNPs Ethylene glycol (RA) Hydrazine hydrate & NH3 (RA) [112]

Chemical reduction in micro
flow reactor GO-AuNPs Dimethylamina borane (RA) No agent [113]

Eco-friendly chemical
reduction method rGO-AuNPs Rose water (RA) Rose water (RA) [114]

Reductive deposition process rGO-AuNPs No agent Hydrazine and NH3 [93]

Chemical reduction Graphene-AuNPs NaBH4 (RA) in presence of GO Hydrazine hydrate (RA); SDS as a
protector and disperser [94]

Solution-based chemical reduction Graphene-AuNPs NaBH4 (RA) ODA (FA) [95]

Green synthesis method GO-AuNPs Tannic acid as RA and immobilizing agent Tannic Acid (FA) [97]

Electrostatic self- assembly Graphene-AuNPs NaBH4 (RA) 1-pyrene butyric acid (FA) [96]

Seed-assisted reduction method rGO-AuNPs NaBH4 (RA) &Trisodium citrate (SA) Pyrene ethylene glycol amine or decyl
pyrene (FA) [69]

Wet impregnation thermal
reduction method Graphene-AuNPs A flow of H2/Ar (RA) Hydrazine hydrate & NH3 (RA); Sulphur

(FA) [98]

Reduction via amidation reaction GO-AuNPs 4 amino-thiophenol (FA) Thionyl chloride (FA) [83]

Chemical Reduction Graphene-AuNPs Sodium citrate (RA) 1050 ˝C for 30 s in furnace (RP);
Hydrazine hydrate (RA) [115]

Chemical reduction GO-AuNPs Sodium citrate (RA) - [81]

Green dual reduction method rGO-AuNP Ascorbic acid (RA) Ascorbic acid (RA)
Polyvinylpyrrolidone (SA) [116]

One-pot green synthesis GO-AuNPs Tyrosine (RA) No agent [117]

Wet impregnation–thermal
reduction method GNs-AuNPs

Flow of H2/Ar (10% H2) by ramping
temp. From room temp. to 350 ˝C
(10 ˝C/min) and holding at 350 ˝C for 3 h

GO–GNs by Hydrazine hydrate and NH3 [98]

Microwave reduction GO-AuNPs Microwave exposure (1.05 kW, 2450 MHz) No agent [101]
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Table 4. Cont.

Name of the Synthesis Process
Name of the Final
Graphene–Gold Hybrid

Gold—Functionalizing Agent
(FA)/Stabilizing Agent (SA)/Reducing
Agent (RA)

Graphene—Functionalizing Agent
(FA)/Stabilizing Agent (SA)/Reducing
Agent (RA)/Reduction Process (RP)

References

Microwave-assisted
simultaneous reduction Graphene-AuNPs Microwave exposure (0.8 kw) at 80 ˝C for

5 min under vigorous stirring Hydrazine hydrate (RA) [100]

Microwave
irradiation—simultaneous
reduction

Graphene-AuNPs Microwave irradiation for 5 min Ascorbic acid (RA) [102]

Microwave-assisted
simultaneous reduction Graphene-AuNPs Microwave exposure (0.2 kw) for 2 min Polyethyleneimine (FA) [103]

Sonolytic simultaneous and
sequential reduction Graphene-AuNPs Ultrasonic frequency of 211 kHz No agent [105]

Sonochemical reduction Graphene-AuNPs Ultrasound irradiation No agent [104]

One-pot one step
photochemical method GO-AuNRs UV-irradiation (256 nm, 30 W) for 25 min

in a quartz tube No agent [106]

Photochemical reduction Graphene-AuNDs Photochemistry (RA) in presence
of octadecanethiol No agent [107]

Photochemical reduction Graphene-AuNS Photo (LED) irradiation No agent [108]

Photo-assisted chemical reduction Graphene-AuNPs Laser light in presence of
AuCl4´ electrolyte No agent [109]

Light-induced covalent interactions rGO-AuNPs 3-aryl-3-(trifluoromethyl) diazirine (FA)
GO to rGO by high temp. (1050 ˝C for 30
s) reduction in an argon flow
environment (RP)

[23]

Self-catalysis reduction rGO-AuNPs NaBH4 (RA)
CTAB (SA) NaBH4 (RA), GO–AuNPs (catalyst) [84]

Self-assembly/
Noncovalent attachment rGO-AuNPs & GO-AuNPs 2-mercaptopyridine (FA), Trisodium

citrate (SA/RA) - [82]

Thermal reduction of
GO/electrostatic attractions rGO-AuNPs - GO to rGO by thermal (200 ˝C) reduction

in an argon flow environment [96]

LBL self-assembly/
electrostatic interactions Graphene-AuNPs Trisodium citrate (SA) BSA (RA & SA) [118]

- Graphene-aerogel
(GA)@AuNPs/AuNPs Citric Acid (RA)

Ascorbic acid (RA) for GO to GA;
freezing drying and thermal annealing at
180 ˝C for 6 h for final products

[119]
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2.2.2. Electrochemical Method

The electrochemical reduction method is a simple, fast, and green technique of graphene–AuNPs
fabrication. The classical electrochemical deposition method consists of three steps: firstly, deposition
of graphene sheets onto an electrode, secondly, immersion of the graphene-coated electrode in an
electrolytic solution containing metallic precursors, and finally application of an electrochemical
potential. Generally, glassy carbon electrode (GCE) as a working electrode material and an in situ

technique is mainly applied for the electrochemical deposition of graphene–AuNPs. Table 5
summarizes different reduction methods, electrochemical potentials, and reaction conditions for
the fabrication of graphene–AuNPs composites.

Table 5. In situ electrochemical reduction approaches for graphene–gold nanoparticles.

Electrode
Composition of
Electrolytic Solution

Applied Electrochemical Potential
and Reaction Condition

References

AuNPs/rGO/GCE 10 mM AuCl3, Nafion
(0.5%), and 0.1 M H2SO4

´1.0 V for 500 s. [41]

Au film/graphene–Au
nanocomposite/GCE 0.1 mM HAuCl4

´1.2 V for 50 s for graphene; ´0.25 V
for 50 s for Au electrodeposition. Run
the process using alternate graphene
and AuNPs for 3 cycles.

[89]

DHB/AuNPs/rGO/GCE 0.3 mM HAuCl4 ´0.2 V for 24 h at room temp. [90]

Graphene/nano-Au/GCE 0.1 M Kn and 5 mM
HAuCl4

´0.2 to 1.0 V for 2 cycles at scan rate
of 50 mV¨s´1. [91]

AuNP/electro reduced
graphene (eGr)/Indium
titanium oxide (ITO)

0.5 mM HAuCl4.nH2O
in phosphate buffer

0 to ´1.6 V continuously for 75 cycles
at a scan rate 50 mV¨ s´1 to
electrodeposit eGr on ITO and 25
cycles for AuNPs electrodeposition.

[120]

AuNPs/2,5-di-(2-thienyl)
-1-pyrrole-1-(p-benzoic acid)
(DPB)/graphene/Au electrode

3 mM of HAuCl4
containing 0.5 M H2SO4

´1.2 V for 200 s for electrochemical
reduction and deposition of GO on
Au electrode; ´0.25 V for 25 s at 10 ˝C
for the electrodeposition of AuNPs.

[121]

AuNPs/graphene-nanofibers/
GCE

25 mM of HAuCl4
containing 0.1 M
Na2SO4 solution

´0.4 V for 300 s for the
electrochemical deposition of AuNPs. [122]

AuNPs/graphene/GCE mM HAuCl4 solution
containing 0.5 M H2SO4

´1.2 V for 1200 s for the
electrochemical reduction of GO on
the electrode surface; ´0.25 V for 30 s
for the electrodeposition of AuNPs.

[123]

Graphene/nano-Au/GCE
0.1 M phosphate buffer
(pH 7.0) containing 6.5
mM HAuCl4

0 to ´2 V at a scan rate of 100 mV¨ s´1

for continuous cyclic voltammetric
sweep of 40 cycles.

[124]

AuNPs/GO/GCE HAuCl4 solution

Electrodeposition of AuNPs by pulse
voltammetry with a pulse width of
0.1 s, potential 1.1 and ´0.2 V,
respectively.

[125]

AuNPs/ERGO/carbon ionic
liquid electrode (CLIE) 5.0 mM HAuCl4 solution

´1.3 V for 300 s to from a stable
ERGO on the surface of CILE; ´0.4 V
for 300 s for electrodeposition of
AuNPs on ERGO/CILE.

[126]

2.2.3. Hydrothermal Reduction Method

Usually, the hydrothermal reduction method is performed at high temperature with high steam
pressure using an autoclave. The most advantageous feature of this approach is the formation
of nanoparticles or nanowires without any requirement for post annealing and calcination [25].
Qin et al. [85] reported the fabrication of GO–AuNCs (80% of pentagonal pyramid and 20% of
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tetrahedron) of 10–20 nm in size variation through a hydrothermal reduction and crystallization
route using polytetrafluoroethylene autoclave at 60 ˝C overnight without using extra reductants or
capping agents. Liu et al. [87] described the preparation of graphene–AuNPs in a Teflon-lined autoclave
with a microwave hydrothermal system at 150 ˝C for 60 min in the absence of reducing agents.

2.2.4. Physical Vapor Deposition Method

This procedure ensures the formation of metal nanoparticles of different and controllable
geometries on the graphene sheets. Zaretski et al. [127] deposited metal nanoislands on a
metal/graphene bilyer template by keeping the evaporation rate at 0.1 Å¨ s´1 and chamber pressure
at 7 ˆ 10´7 torr, whereas Pandey et al. [128] fabricated AuNPs on graphene with appropriate control
over size (down to ~1.5 nm) and coverage (5 ˆ 104 µm´2). In physical vapor deposition, the size of
the gold atoms deposited onto the graphene depends on the number of the layers [127–129]. Besides,
the geometry, distribution, and inter-island gaps of the gold metal deposited on graphene rely on the
type of the substrate materials, and reaction conditions [127,128]; the morphology varies significantly
even on the type of the metal itself [128].

2.2.5. Ex Situ Method

In the ex situ approach, nanoparticles are synthesized in advance and subsequently decorated
onto the surface of graphene sheets. This attachment is facilitated by either covalent or noncovalent
interactions, including van der Waals interactions, hydrogen bonding, π-π stacking, or electrostatic
interactions. In this method, metal nanoparticles or graphene, or sometimes both, necessitate activation
with functional groups [130]. However, the type of functionalization and interaction strength defines
the loading, i.e., dispersion and concentration of metal nanoparticles on the graphene surface [131].
Therefore, the ex situ self-assembly procedure is a promising technique to overcome the difficulties
encountered during the in situ technique for nanocomposite fabrication [25].

Covalent Interactions

The ex situ approach for noble metal nanoparticles decoration is not often used. GO rather
than rGO is preferable for covalent attachment of nanoparticles due to the vast amount of oxygen
functionalities on its surface which facilitate bonding with other functional groups. Ismaili and
co-workers demonstrated the light-activated (wavelengths above 300 nm) covalent formation of
3-aryl-3-(trifluoromethyl)-diazirine modified AuNPs on rGO [23].

Noncovalent Interactions

‚ π-π stacking

Generally, aromatic compounds are attached to the nanoparticle surface, which enables their
attachment to graphene via π-π stacking. For example, pyridine, purine, and pyrimidine bases of
DNA [132], thiolated DNA (Figure 6a) [132], and pyrene-labeled DNAs [133] have provided π-π
interactions between AuNPs and GO/rGO/graphene sheets. Guided by similar principles, Wang et al.

fabricated DNA conjugated AuNPs and AgNPs on GO nanosheets, respectively, by functionalizing
nanoparticles with DNA via didentate capping ligands, followed by assembly onto GO via π-π stacking
interactions [134].

‚ Electrostatic interactions

This is one of the most common as well as being considered a facile and scalable method
of synthesizing graphene–metal nanoparticles in a precise manner avoiding conglomeration.
The common principle behind this reaction is that GO and rGO have immanent negative charges on
their surface which are being utilized to assemble/decorate positively charged AuNPs. For instance,
Mao et al. [96] have described the electrostatic force-directed assembly of AuNP–antibody conjugates
onto the surface of TR-GO sheets.
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‚ Layer-by-layer self-assembly

This bilayer film is typically generated by alternating the oppositely charged GNs and AuNPs.
Consecutive repetition of the decoration process is employed to make the desired number of
bilayers. Liu et al. fabricated graphene/AuNPs multilayered films consisting of 4-styrenesulfonate
functionalized rGO and polyamidoamine dendrimer stabilized AuNPs on GCE adapted with an
initial layer of poly(diallyldimethylammonium chloride) [135]. Xi et al. [118] reported a uniform three
dimensional (3D) AuNPs-inserted graphene thin film by the electrostatic LBL assembly of AuNPs and
bovine serum albumin-functionalized GNs (Figure 6b) followed by thermal annealing at 340 ˝C for
two hours under aerobic conditions (Figure 6b).



 

Figure 6. Ex situ Graphene-–AuNPs decoration (a) noncovalent interactions, adapted from [132], 
Figure 6. Ex situ Graphene—AuNPs decoration (a) noncovalent interactions, adapted from [132],
with permission from ©2009 Royal Society of Chemistry; (b) LBL self-assembly, adapted from [118],
with permission from ©2012 American Chemical Society.

2.2.6. Graphene-Wrapped Gold Nanoparticles

Graphene, GO, or rGO can be easily used to wrap or encapsulate the AuNPs with
variable sizes ranging from nanometer to even micrometer level due to their flexibility and 2D
nature [136]. The oxygen functionalities on GO and rGO generate an overall negative zeta potential,
thus easing coupling with positively charged AuNPs. This encapsulation process enhances the
greater degree of contact, results in the suppression of AuNPs aggregation, and ensures greater
stability, thereby limiting the degree of exfoliation of AuNPs from graphene [76]. One of the
initial efforts is the fabrication of a graphite-like carbon shell around the AuNPs attached to a
3-mercaptopropyl-trimethoxysilane-modified Si substrate, followed by the growth of a graphene
shell using the CVD process [137]. Bian et al. [138] applied the CVD method for growing graphene
shells onto the loaded HAuCl4 metal precursors on fumed silica powder, followed by silica dissolution
to retain the graphene-encapsulated AuNC. On the other hand, Kim and co-workers [139] achieved
the desired structure by using aminopropyltriethoxysilane-functionalized ITO to decorate AuNPs
and followed by encapsulation by the GO via electrostatic interaction. GO-wrapped AuNPs hybrid
materials are now constructed without using any substrate, which ensures consistent wrapping of GO
sheets onto each of the AuNPs (Figure 7a,b) [140] as well as controllable, tunable size and morphology
of the AuNPs (Figure 7c) [141].



 

Figure 7. TEM images of the Au-encapsulated GO nanoparticles at (a) low magnification; (Figure 7. TEM images of the Au-encapsulated GO nanoparticles at (a) low magnification; (b) high
magnification, adapted from [140], with permission from ©2013 Royal Society of Chemistry and (c) SEM
image of GO-wrapped AuNPs, adapted from [141], with permission from ©2014, 2015 Wiley.
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As per the requirement of specific features, particular approaches are executed: electrostatic
self-assembly of ultrathin GO-wrapped AuNPs or AuNRs with excellent dispersibility of
individual nanoparticles [142], in situ reduction of electrostatically bounded nanosized GO to
cysteamine-stabilized AuNPs or Cetyl-trimethylammonium bromide (CTAB)-stabilized AuNRs
accompanied by greater colloidal stability as well as enhanced photothermal effect [143].
Turcheniuk et al. [144] reported pegylated (PEG) rGO nanoparticles and AuNRs coated with rGO–PEG
(rGO–PEG–AuNRs) by laser irradiation to achieve the declined cytotoxicity of the CTAB-stabilized
AuNRs and enhanced overall photothermal activity. It is observed that the encapsulation of AuNS
by GNs is generally accomplished by electrostatic self-interactions. In some cases, firm bonding is
needed along with expected properties and necessitates different strategies such as functionalization of
the AuNPs [145], generation of different shapes, combinations, and arrangements of AuNS [146,147],
and even by LBL self-assembly [148]. Jin et al. [148] fabricated a complex architecture by introducing
AuNPs into polylactic acid (PLA) microcapsules through a dual microemulsion water-in-oil-in-water
solvent evaporation technique followed by electrostatic LBL deposition of GO on the microcapsule
surface (Figure 8).

 

Figure 8. LBL fabrication process of Au@PLA–(PAH/GO)n microcapsule. Adapted from [148], with
permission from ©2013 Elsevier.

3. Graphene–Gold Nanoparticle Hybrid for Biosensing and Bioimaging Application

Biosensors are self-contained analytical devices using biological sensing elements that respond
selectively and reversibly to detect and/or quantify a particular target analyte or family of analytes.
A biosensor is made up of two fundamental components—(i) receptor and (ii) transducer. The receptor
may be of either organic or inorganic material which interacts with a marked analyte or group of
analytes. Conversely, a transducer transforms the recognition event which occurred between the
analyte and the receptor into an assessable signal. These signals can occur in varied forms including,
but not restricted to, electrical, electrochemical, and optical.

Nanoparticles can be used as biosensor platforms to enhance sensitivity by amplifying the
obtained signal as well as increasing the available surface area for analyte binding. Graphene–AuNPs
hybrids made up of two excellent and unique modalities in this context ensure a number of
advantageous properties in biosensing applications. Graphene itself is an excellent material with which
to immobilize nanoparticles, enhancing their stability, e.g., preventing aggregation while graphene
with nanoparticles increase the available surface area for analyte binding, as well as improving
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their electrical conductivity and electron mobility, thereby enhancing the achievable sensitivity and
selectivity. In the next section, we focus primarily on the use of graphene–AuNP hybrid materials in
electrochemical and optical biosensors with greater emphasis on how they compare to current gold
standards and their sensitivities and selectivities towards various biomolecules.

3.1. Electrochemical Biosensor

Electrochemical biosensors are, by far, the largest group of sensors which provide especially
attractive methods of analyzing the content of a biological sample due to direct conversion of a
biological recognition event to an electrical signal. A typical electrochemical biosensor consists of a
sensing (or working) electrode containing a biological recognition element and a counter electrode, both
detached by a layer of electrolytes. At electrochemical biosensing, in most cases silver/silver chloride
(Ag/AgCl) and platinum (Pt) wire/sheets are being used as the reference and auxiliary/counter
electrodes respectively, against different graphene–AuNPs-based working electrodes. On the basis of
the nature of their biological recognition process, electrochemical biosensors can be categorized
into—(i) affinity sensors; and (ii) catalytic devices [149]. Affinity-based sensors depend on the
selective binding properties between a biological element such as an antibody, enzyme, nucleic
acid, or a receptor and its target analyte, which results in the production of a measurable electrical
signal. On the other hand, catalytic sensors generally incorporate nanoparticles or enzymes, whole
cells, or tissue pieces that identify the target analyte and yield electroactive species [149]. Various
forms of voltammetry/amperometry (e.g., linear sweep, differential pulse, square wave, stripping),
impedimetry, and potentiometry techniques are commonly used for the electrochemical detection of
biomolecules [150,151]. The amount of analyte being reduced or oxidized at the working electrode
is proportional to the concentration of the target analyte present. In this context, graphene is being
considered as a perfect conductor of electrical charge material [152,153]. Furthermore, the high surface
area of graphene facilitates the formation of a large number of defects and, consequently, electroactive
sites, due to the heterogeneous electron transfers that can occur between graphene and the analyte to
be oxidized or reduced [154]. The electrochemical behavior of graphene is first-rate and analogous
to other carbon-based materials, including CNTs and graphite. Current researches have shown
that graphene-based electrochemical biosensors exhibit better performance than CNTs due to the
presence ofmore sp2-like planes and surface edge defects. While graphene exhibits a great prospective,
graphene nanoparticle composites, including metal nanoparticles, metal oxide, and semiconductor
nanoparticles, have recently paved more attention toward their electrochemical sensing capability [155].
These nanoparticles exhibit different roles, for example, the immobilization of biomolecules, catalysis
of electrochemical reactions, or acting as a reactant in electrochemical sensing platforms [153,156–158].

In the biomedical field, electrochemical biosensors are currently showing the dominating trend.
The fabrication of electrochemical biosensors using graphene–AuNPs for glucose sensing is one
of the prime and mostly applied methods. For example, Shan et al. [159] constructed a novel and
biocompatible graphene/AuNPs/chitosan nanocomposite on an Au electrode which shows high
electrocatalytical activity toward H2O2 and O2 due to attributes of the synergistic effects between
graphene and AuNPs. Influenced by this result, a glucose biosensor is manufactured by immobilizing
glucose oxidase (GOD) on thin films of graphene/AuNPs/chitosan nanocomposites on an Au
electrode. The resulting biosensor reveals a remarkable amperometric response to glucose with
good reproducibility and LOD of 180 µM with a liner range of 2–10 mM, which makes it applicable to
real-time clinical analysis of blood glucose levels (4–6 mM) [159]. Therefore, different combinations
of graphene–Au nanocomposites have been tested for glucose biosensing by immobilization
of the GOD enzyme, including AuNPs–rGO/GCE [114], graphene/nano-Au/GOD/GCE [124],
AuNPs–graphene/GCE [160], graphene/ polyaniline(PANI)/AuNPs/GCE [161], AuNPs–graphene
rod [162] and GCE-4-aminothiphenol(ATP)-GNs–AuNPs [98]. Here, at first a GNs–AuNPs hybrid film
is prepared by the wet impregnation-thermal reduction method followed by their deposition on a
modified glassy carbon electrode (GCE) via LBL assembly of ATP and GCE for up to three layers. GOD
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is immobilized and checked for glucose-sensing efficiency both by voltammetry and electrochemical
impedance spectroscopy (EIS). EIS experimental data analysis indicates the enhanced activity which
might be due to the synergistic effect of GNs and AuNPs, the role of ATP mediating the assembly of
the GNs–AuNPs hybrid on GCE, and the increase in surface roughness [98]. LBL deposition of GOD
on graphene–AuNPs is also mentioned by another group of scientists [163].

On the other hand, a non-enzymatic glucose voltammetric sensor developed by Ruiyi et al. [119]
based on GA@AuNPs/AuNPs shows ultra-high sensitive electrochemical response to glucose
due to greater electron transfer, mass transport, and catalytic activity. The study of the prepared
GA@AuNPs/AuNPs shows high electrical conductivity (15.4 S¨ m´1), specific surface area
(291.6 m2

¨ g´1), and an apparent heterogeneous electron transfer rate constant (14.8 ˘ 0.12 cm¨ s´1)
because of their well-exposed active sites as well as the high catalytic properties of the adsorbed
AuNPs. The enzyme-free voltammetric glucose sensor based on graphite/SrPdO3 perovskite/AuNPs
nanocomposites offers many advantages for glucose electro-oxidation such as high sensitivity,
low detection limit, and excellent long term stability [164]. It has shown high selectivity to glucose
even in presence of common interferences like ascorbic acid, uric acid, paracetamol, dopamine, and
chloride. Furthermore, it is also proved to be an excellent sensor for glucose sensing in human urine
and blood serum samples with outstanding recovery and low LOD of 16.55 and 14.25 µmol¨ L´1,
respectively [164].

Another good example is the utilization of AuNPs-decorated graphene nanocomposites in the
catalysis of electrochemical reactions to detect H2O2. For example, Fang et al. [165] fabricated a
graphene–AuNPs hetero-structure using poly(diallyldimethylammonium chloride)-functionalized
graphene which ensured high loading and uniform dispersion of AuNPs on the GNs, as well as
making the sensor an efficient one with low LOD and a wide linear range compared to that of
an enzyme-based sensor. On the other hand, graphene–AuNPs immobilized with hemoglobin
to construct the Nafion/hemoglobin (Hb)/AuNPs–graphene/GCE sensors show ultra-sensitivity
for H2O2 detection (LOD 0.03 µM) with good reproducibility and longer stability (Figure 9) [87].
Chang and co-workers [166] used LBL-assembled AuNP–graphene–poly (toluidine blue O) hybrid
films for the detection of H2O2 by evaluating the oxidative stress of a tumor cell. The results indicated a
higher efflux of H2O2 in tumor cells compared to normal cells. Similarly, the excellent sensing features
of the graphene–AuNPs composite coupled to electrochemical mechanisms have influenced the
detection of several other biomolecules and imparted a greater emphasis on biomedical applications,
namely, the detection of uric acid [96] and β-nicotinamide adenine dinucleotide (NADH) [41] in human
urine with effective separation from the common interferents (glutathione, glucose, ascorbic acid, and
quinine), and many others.

Fabrication of electrochemical biosensors using graphene–AuNP hybrids for DNA detection
is one of the most advisable methods nowadays. Wang et al. [125] showed that nano electrode
ensembles (GCE–GO–AuNP) can be easily modified by thiolated probe DNA (HS-DNA) through
strong Au–S bonding. Addition of the target DNA or 1-mismatch target DNA (m-DNA) facilitates the
hybridization of probe DNA with intercalation of methylene blue into the DNA duplex, specifically
by binding with guanine in DNA molecules. A super-sandwich type electrochemical biosensor
(Figure 10) was fabricated by Wang et al. [167] using a methylene blue-labelled signal probe for
sequence-specific DNA detection with ultra-sensitivity and single-base mismatched target DNA
detection. Conversely, Peng et al. [168] constructed AuNPs/toluidine blue–GO-based (AuNPs/TB–GO)
label-free biosensor for the detection of the multidrug resistant 1 (MDR1) gene responsible for the
resistance to chemotherapeutic drugs used in the treatment of human cancer. The developed sensor
showed very low LOD with a wide linear range as well as an ability to differentiate between single-base
mismatched DNA sequences among the MDR1-related DNA sequences. Sun et al. [89] reported
an electrochemical DNA biosensor made up of multilayer graphene–AuNPs immobilized with a
dual-labelled (50-SH and 30-biotin) stem-loop DNA probe. This DNA biosensor is extremely effective
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in the detection of the peanut allergen-Ara h1 gene from peanut milk beverages as well as highly
sensitive and selective to the target DNA sequence with great recovery (86.8%–110.4%).

 

Figure 9. Fabrication steps of AuNPs–Graphene/Hb/Nafion/GC electrode and electrocatalytic Figure 9. Fabrication steps of AuNPs–Graphene/Hb/Nafion/GC electrode and electrocatalytic activity
for H2O2. Adapted from [87], with permission from ©2014 Elsevier.

 

Figure 10. Schematic representation of the fabrication procedure of the DNA biosensor. (a) DPVFigure 10. Schematic representation of the fabrication procedure of the DNA biosensor. (a) DPV cures
from the super-sandwich biosensor; (b) DPV cures from the sandwich biosensor. Adapted from [167],
with permission from ©2015 Elsevier.

Some pathogenic bacterial species are very difficult to isolate and identify due to their low growth
rate and fastidious nature. Hence, their rapid and sensitive detection are crucial to laboratory diagnosis
and appropriate patient management. Mycobacterium tuberculosis is one of the most problematic
bacteria of worldwide public health concern. Tuberculosis is easily transmissible via air, hard to
isolate, and has spread across borders and developed multidrug resistance. Hence, the fabrication
of an electrochemical DNA biosensor to identify Mycobacterium tuberculosis is a pressing need to
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public health and society. Liu et al. immobilized a capture probe (specific sequence of the IS6110
gene) on rGO–AuNPs as a sensing platform and a probe-label (AuNPs–PANI) as a tracer label for
amplification. The sensor exhibits ultra-sensitive detection of M. tuberculosis DNA as low as femto
mole (fm) level [169]. Wang et al. [170] focused on the preparation of a low cost, robust, rapid, and
sensitive impedimetric immunosensor, which is made of anti-E. coli O157:H7 antibodies immobilized
on an AuNPs-modified free-standing rGO paper electrode (rGOPE) via the biotin–streptavidin
system to detect the most prevalent food-borne disease-producing bacteria, Escherichia coli O157:H7.
Dharuman et al. [120] reported an anti-estradiol antibody immobilized eGr–AuNP composite on an
ITO surface for the immune sensing of the breast cancer-inducing hormone 17β-estradiol (E2) in the
presence of [Fe(CN)6]3´/4´. The lowest LOD of the sensor is 0.1 fM, which indicates the viability of
the sensor in real life as blood and urine samples of post-menopausal breast cancer patients normally
contain 17β-estradiol at the picomole level (Figure 11) [120]. Another immunosensor, named the
carcinoembryonic antigen (CEA) immunosensor, was constructed by Yu et al. [171] for the rapid and
sensitive immunoassay measurement of serum CEA concentration by immobilizing the CEA antibody
on AuNPs/poly L-arginine (Arg)/rGO/CILE.

Ά − −

β

Figure 11. Fabrication of eGr–AuNP on ITO for immune sensing of estradiol. Adapted from [120], 

μ
μ

Figure 11. Fabrication of eGr–AuNP on ITO for immune sensing of estradiol. Adapted from [120],
with permission from ©2013 Elsevier.

The extraordinarily advantageous properties of graphene–AuNPs make them suitable to different
applications, including: the determination of biological compounds—levodopa, uric acid, and folic acid
simultaneously [90], and ascorbic acid [81], folic acid [126], dopamine [103,135], and animal growth
stimulant; in treatment of estrogen deficiency disorders; in veterinary medicine–diethylstilbestrol
(DES) [91]; antibiotics–chloramphenicol [112]; antiepileptic drugs; emerging pollutants in ground
and surface water–carbamazepine (CBZ) [110]; environmental pollutants–hydroquinone [100],
and so on. The integration of biomolecules in some instances enhances the catalytic properties
of the graphene–AuNPs hybrid in electrochemical applications. For example, the immobilization
of hemoglobin molecules on an AuNPs–graphene–SDS/BPG hybrid electrode increases the
electrocatalytic activity toward nitric oxide [94], while Hb-immobilized AuNPs/graphene with
biocompatible chitosan (GACS) (Hb/AuNPs/GACS)-modified GCE is used for the electrochemical
detection of nitrite at high sensitivity levels within a wide concentration range and is consequently
being envisioned to have promising applications in the monitoring of food safety [172]. Besides, a
number of chemicals related to food adulteration are also being detected, e.g., bisphenol A (BPA)
in baby bottles [122] and in milk samples by an electrochemical aptasensor [123], and aflatoxin B1

in spiked food samples [121]. Graphene–AuNPs-fabricated electrochemical biosensors with their
corresponding identified analytes, citing linear range and LOD, are summarized in Table 6.
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Table 6. Graphene–gold nanocomposites-based electrochemical biosensors, target analytes with
respective specificity of detection.

Composition of the Sensors Detected Analyte Linear Range of Detection LOD References

GOD/rGO–AuNPs/GCE Glucose 1–8 mM 10 µM [114]

Graphene/nano–Au/GOD/GCE Glucose 0.2–2 and 2–20 mM 17 µM [124]

Graphene/AuNPs/chitosan/GOD Glucose 2–10 mM 180 µM [159]

GOD/graphene–AuNPs/GCE Glucose 0.1–10 mM 35 mM [160]

Graphene Rod/AuNPs/GOD Glucose 0.1–10 mM 83 µM [162]

GCE–ATP–GNs–AuNPs–GOD Glucose 1–12 mM (voltammetry) 9.3 µM [98]

GCE–ATP–GNs–AuNPs–GOD Glucose 1–8 mM (EIS) 4.1 µM [98]

GOD/graphene–AuNPs Glucose 0.02–2.26 4.1 µM [163]

GA@AuNPs/AuNPs Glucose 0.01–16 mM 4.0 µM [119]

Graphite/SrPdO3/AuNPs Glucose 0.1–6 mM 10.1 µM [164]

GOD–graphene/PANI/AuNPs/GCE Glucose 0.004–1.12 mM 0.6 µM [161]

Graphene/Au–NPs/GCE H2O2 0.0005–0.5 mM 0.44 µM [165]

Nafion/Hb/AuNPs–graphene/GCE H2O2 0.0001–0.07 mM 0.03 µM [87]

GCE–GO–AuNP–ssDNA DNA - 100 fM [125]

ssDNA/AuNPs–ATPGO/GCE DNA 1.0 ˆ 10´13 to 1.0 ˆ 10´9 M 1.13 ˆ 10´14 M [173]

ssDNA/AuNPs/TB–GO/GCE MDR gene (DNA) 1.0 ˆ 10´11 to 1.0 ˆ 10´9 M 2.95 ˆ 10´12 M [168]

Capture probe
(cDNA)/AuNPs–rGO/GCE DNA 0.1 µM to 0.1 fM 35 aM [167]

Au film/graphene–Au
nanocomposite/GCE

Peanut allergen
Ara h1 gene 10´16 to 10´13 M 0.041 fM [89]

DHB/AuNPs/rGO/GCE levodopa (LD) 0.05–1200.0 µM 18 nM [90]

Au NP/GO/GCEs Ascorbic Acid 0.11–0.6 mM 100 nM [81]

Graphene/AuNPs/GCE DES 1.20 ˆ 10´8 to 1.20 ˆ 10´5

M 9.80 ˆ 10´9 M [91]

AuNPs/rGO/GCE NADH in
human urine 50 nM to 500 µM 1.13 nM [41]

AuNPs/ERGO/CILE Folic Acid 0.01 µM to 50.0 µM 2.7 nM [126]

AuNPs/1-pyrene butyric
acid-functionalized graphene/GCE Uric acid 2.6 ˆ 10´6 to 6.2 ˆ 10´5 M 2.0 ˆ 10´7 M [96]

Graphene
nanosheet–PEI/AuNPs/GCE Dopamine 2.0 to 48.0 µM 0.2 µM [103]

[AuNPs/rGO]20/GCE Dopamine 1.0 to 60.0 µM 0.02 µM [135]

Hb/AuNPs–graphene–SDS/BPG Nitric oxide 7.2 ˆ 10´7 to 7.92 ˆ 10´6 M 1.2 ˆ 10´8 M [94]

Hb/AuNPs/GACS/GRE Nitrite 0.05 to 1000 µM 0.01 µM [172]

AuNPs/graphene nanofibers/GCE Bisphenol A in
baby bottle 8.0 ˆ 10´8 to 2.5 ˆ 10´4 M 3.5 ˆ 10´8 M [122]

Anti-BPA/MCH/AuNPs/graphene/
GCE

Bisphenol A in
milk sample 0.01–10.0 µM 5 nM [123]

Aflatoxin B1
antibody-AuNPs/DPB/graphene/Au

electrode

Aflatoxin B1 in
spiked food 3.2 fM–0.32 pM 1 fM [121]

AuNP/N2-doped graphene/GCE Chloramphenicol 2.0 ˆ 10´6 to 8.0 ˆ 10´5 M 5.9 ˆ 10´7 M [112]

Anti-estradiol
antibody-AuNP–eGr/ITO 17 β-estradiol 1 ˆ 10´3 to 0.1 ˆ 10´12 M 0.1 fM [120]

rGO–AuNPs-modified GCE M. tuberculosis
1.0 ˆ 10´15 and 1.0 ˆ 10´9

M
fM level [169]

E. coli O157:H7
antibodies-AuNPs/rGOPE E. coli O157:H7 1.5 ˆ 102 to 1.5 ˆ 107

cfu/mL
1.5 ˆ 102

cfu/mL
[170]

Au-graphene–AuNPs electrode Carbamazepine 5 ˆ 10´6 to 10´2 M 3.03 ˆ 10´6 M [110]

anti-CEA/AuNPs/Arg/rGO/CILE CEA 0.5 to 200 ng¨ mL´1 0.03 ng¨ mL´1 [171]

AuNP–graphene/CILE Hydroquinone 0.06 µM to 800.0 µM 0.018 µM [100]
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3.2. SERS Biosensor

SERS is a Raman spectroscopic technique combining laser spectroscopy with optical properties of
metallic nanostructures. It provides a greatly enhanced Raman signal from a Raman-active analyte
adsorbed onto metal nanostructure surfaces [174–179]. This enhancement factor strongly relies on the
size, shape, and composition of the metallic nanostructure and nature of the molecular analyte [180].
The overall SERS effect is due to two different mechanisms—the electromagnetic enhancement (EME)
and chemical enhancement (CE). The EM mechanism is based on the interaction of the transition
moment of an adsorbed molecule with the electric field of surface plasmons induced by the incoming
light on the metal [181], and is dependent on the presence of rough features on the metal surface [182],
independent of the probe molecules. CE is due to the interaction of the adsorbed molecules on the
metal surface, mostly from the first layer of the charge–transfer resonance between the adsorbate and
the metal [181]. Hence, SERS is being considered as a powerful analytical tool for surface and interfacial
analysis as it can unveil the molecular fingerprint information and ultrahigh surface sensitivity [183].
It is one of the best techniques for molecular analysis, with very high sensitivities (nano mole or even
pico mole level) [184] and the added capability of detecting single molecules [185–188].

For example, GO-AuNRs have been proved as strong SERS substrates by using a model molecule
(cresyl violet perchlorate) that unveiled very large SERS enhancement factors (106) with very low
molecular detection limits (10´11 M) [106]. It is well known that noble metal nanoparticles (e.g.,
Cu, Ag, or Au) are more commonly used in SERS-based experiments due to their electromagnetic
properties, which enhance the Raman signal [82]. On the other hand, graphene or GO have the
potentiality for greater Raman signals via the chemical enhancement mechanism [42,189,190], which is
independent from that of noble metal nanoparticles. It can be anticipated that graphene–metal
nanocomposites would act synergistically for further magnification of the weak Raman signals by
many orders of magnitude via chemical and electromagnetic enhancement when compared to using
either graphene or metal nanoparticles alone [82,101,184,191]. Hu et al. [192] provided a clear dictation
in this context by comparing the Raman signals of an adsorbed aromatic dye molecule, crystal violet
onto SiO2/Si, GO, Au NRs, and GO-AuNRs separately, and validated the boosted SERS signal of
GO-AuNRs nanohybrids. This enhancement is the summation of electromagnetic enhancement based
on local electromagnetic field by the AuNRs as the hot spots, and chemical mechanism based on the
charge transfer and chemical bonding of GO and crystal violet dye molecules [192]. Zhang et al. [193]
fabricated SERS-active substrates in a newer dimension based on GO embedded Au@AgNPs sandwich
nanostructures (Au@Ag-NPs/GO/Au@Ag-NPs) to achieve higher sensitivity, reproducibility and
reliability of the Raman readout and obtained dramatic enhancements of the Raman signals (R6G with
an enhancement factor of 7.0 ˆ 107) due to abundant hot spots on their surfaces and the distinctive
edifice of the GO sheets. However, a few examples of the SERS-based enhancement are summarized
in Table 7. It is experimentally proved that the degree of SERS enhancement could be fine-tuned
by the quantity [194], size and shape [191,195,196], type [197] of AuNS on the graphene sheets,
and morphological arrangement of graphene and AuNPs (Figure 12) [198], as well as the excitation
wavelength of the laser [199]. On the other hand, corresponding enhancement factors are reliant on the
volume of graphene and consequentially its thickness [200], layer numbers, i.e., single layer graphene
provides larger SERS enhancement in comparison to fewer layers of graphene [199], and type of
defects of the graphene sheets. Moreover, in-plane defects in graphene prepared by the CVD technique
have defect-enhanced firm interactions of AuNPs with the defect sites and hence a positive influence
on the efficient physical functionalization with AuNPs [201]. An experiment by Wang et al. [197]
proved that ~7 nm thick Au films are the perfect SERS substrates among the different thickness of Au
films, decorated on the monolayer graphene for the characterization of low concentration rhodamine
molecules, providing the strongest Raman signals for molecules with the weakest photoluminescence
background. All of these extraordinary advantageous properties make graphene–Au nanocomposites
the perfect substrate for SERS measurements, as it has been extensively instigated in versatile
applications, including sensing and molecular diagnostics, biomedical applications, agriculture, food
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adulteration [202], and so on. This hybrid has also been verified for the detection of single molecule
interactions [184], identification of pathogenic microorganisms [203] and biomolecules [204,205],
nucleic acids [206], and cancer cells [207], and even in the detection of explosives and chemical warfare
agents [208].

Nguyen et al. [202] have fabricated a high performance SERS substrate by using graphene–Au
films–AuNRs for the detection of three pesticides namely azinphos-methyl, carbaryl, and phosmet
by SERS with LODs of approximately 5, 5, and 9 ppm, respectively. The LODs of carbaryl
and phosmet meet the FAO/WHO- and EU-defined maximum residue limits, which make it a
potential method in food safety applications. On the other hand, Zhang et al. [193] developed
Au@Ag-NPs/GO/Au@Ag-NPs sandwich nanostructures to detect the pesticide thiram (a broadly
applied sulfur-containing pesticide) in commercially marketed grape juice. This hybrid nanostructure
shows a narrow detection limit of 0.1 mM (0.03 ppm), which is significantly below the maximal residue
limit of 7 ppm in fruit as approved by the United States Environmental Protection Agency. This simple,
rapid, and ultrasensitive Raman detection approach shows significant potential in practical applications
like on-site monitoring of food/environmental safety and spectroscopic identification of trace pesticides
in agricultural foodstuffs [193]. Similarly, Fu et al. [117] mentioned GO–AuNPs hybrids as an efficient
SERS substrate for the sensitive, selective, and label-free detection of malachite green in water samples,
which is a cationic triphenylmethane dye with high genotoxicity and carcinogenicity. Heavy metal
contamination is one of the alarming and challenging problems in this 21st century. Mercury (II) (Hg2+)
is considered one of the most toxic pollutants, having severe adverse effects on the environment and
consequently on human health. Therefore, its detection is of prime concern and several approaches
have been attempted. In this milieu, Ding et al. [209] synthesized heterojunction SERS active substrates,
AuNPs/rGO/SiO2/Si through in situ direct growth of AuNPs on rGO surfaces, which have been
utilized for trace analysis of Hg2+ via thymine–Hg2+–thymine coordination. This heterojunction SERS
sensor exhibited 500 times greater enhancement the referenced mercury (II) sensor with an LOD of
0.1 nM or 20 ppt for Hg2+.

 

Figure 12. Morphology-dependent SERS performance of normal SERS and graphene-mediated SERS 

′

Figure 12. Morphology-dependent SERS performance of normal SERS and graphene-mediated SERS
(G-SERS). (a,d) AFM images of a bilayer graphene (2LG)-covered 8-nm gold film (a) before, and (d) after
annealing, showing both the bare gold regions and graphene-covered regions; (b,e) Schematic
illustration of the contact state between graphene and AuNS correspond to the enlarged regions;
(c,f) SERS performance of normal SERS (top) and G-SERS regions (bottom) (c) before, and (f) after
annealing, respectively. “*” marks the G and G1 band of the 2LG. The figure is adapted from [198],
with permission from ©2013 Wiley.

A glucose biosensor has been manufactured by Gupta et al. [210] using immobilized glucose
oxidase (GOD) into mercaptophenyl boronic acid (MBA)-terminated Ag@AuNPs–GO nanomaterials
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films. The developed SERS biosensor shows a linearity range of glucose detection between 2 and
6 mM, with LOD of 0.33 mM, as well as successful determination of glucose in blood samples.
This SERS-based analytical method can offer multiple benefits such as selectivity, high speed of
analysis, and high cost-effectiveness over other analytical methods. Fan et al. [203] demonstrated
a popcorn-shaped GO–AuNPs hybrid SERS probe for the ultrasensitive (fM), label-free detection
of HIV DNA and the identification of methicillin-resistant Staphylococcus aureus in concentrations
as low as 10 cfu/mL. He et al. [206] fabricated a SERS active platform displaying AuNPs on
CVD-made graphene for contemporaneous multiplex DNA examination with a single excitation
light source. Here, two different thiolated DNA probes were immobilized on AuNPs, followed by
the exposure of target DNA as well as the addition of Cy3-labeled reporter DNA, which resulted
in the formation of a sandwich composed of probe/target/reporter DNA. Multiplex detection of
DNA was achieved with a LOD of 10 pM. On the other hand, little or no Raman signal was
detected from the uncomplimentary DNA at the same concentration. It was also revealed that
Raman signals from the Cy3 on AuNPs–graphene/SiO2/Si substrate exhibited intense Raman signals
compared to the SiO2/Si, graphene–SiO2/Si, AuNPs–SiO2/Si substrates individually, which was
attributed to the coupled surface plasmon resonance absorption of AuNPs on the graphene film [206].
The identification of explosive molecules in trace levels is very crucial not only for security screening
but also for the environment and human health. Driven by this need, Kanchanapally et al. [211]
made a GO–Au nanocage hybrid SERS platform for the label-free identification of the nitro explosives
cyclotrimethylenetrinitramine (RDX) and trinitrotoluene, with resulting LODs as low as 500 fM and
10 fM, respectively.

Table 7. SERS enhancement of the graphene–gold hybrid nanocomposites.

Name of the Hybrid Substrate
SERS—Order of

Magnitude
Compared Material References

rGO–AuNPs 100 Pure AuNPs [42]

Graphene–AuNS 45 Graphene [43]

Graphene–AgNS 150 Graphene [43]

AuNPs/graphene/SiO2/Si 120 Graphene/SiO2/Si [199]

Graphene–AuNPs 10–100 AuNPs [212]

Graphene–AuNPs 77.6 Graphene [213]

Pyrene ethylene glycol
amine-functionalized rGO/AuNRs 14.7 Bare rGO [69]

R6G/GO–AuNR with CTAB 10 Pure AuNRs [200]

Nano GO (nGO)–Au nanostars 5.3 nGO [214]

Graphene–AuNPs 3.3 AuNPs [215]

R6G/AuNP/graphene/SiO2/Si 86 Graphene/SiO2/Si with R6G [216]

Ag/rGO/Au for rhodamine B (RhB) 8.8 Pristine Ag dendrites [217]

AuNPs/rGO/SiO2/Si 40 Blank substrate [209]

GO–AuNPs ~4 GO [218]

Neural Stem Cells on GO
encapsulated AuNPs 3.5 AuNPs [139]

GO–AuNS 3 GO [219]

GO/PVP/intracellularly grown
AuNPs (IGAuNPs) 5 IGAuNPs [220]

Carbaryl on graphene–Au film–AuNR 2 Au film–AuNR [202]

Carbaryl on graphene–Au film–AuNR 100 Graphene–AuNR [202]
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Table 7. Cont.

Name of the Hybrid Substrate
SERS—Order of

Magnitude
Compared Material References

Si/N2 doped diamond-like carbon
(DLC-N)/Au/rGO/Au for RhB 860 Si/DLC-N [221]

GO-popcorn shaped AuNPs hybrid
for R6G 11 GO [203]

GO-Au nanocage for RDX 4 Au nanocage [211]

Graphene-isolated AuNC (GIAN)
nanostructures for R6G More than 100 R6G [138]

Au@AgNPs/GO/Au@AgNPs
sandwich for R6G

Enhancement factor of
~7.0 ˆ 107 - [193]

3.3. SERS Bioimaging

GO–AuNPs hybrids for SERS-based bioimaging have been emerging due to the superior attributes
of SERS in this field, such as greater sensitivity, and a stable and reproducible signal over the
conventional methods. For example, Ma et al. [140] fabricated GO-wrapped AuNPs (AuNPs@nGO)
which is employed for intracellular Raman imaging in HeLa cancer cells. It was predicted that
AuNPs@nGO enters HeLa cells through endocytosis and is mainly distributed in the cytoplasm. Liu et

al. [218] found that HeLa cells incubated with GO–AuNPs hybrid exhibited much stronger and more
distinguishable Raman signals than the cells incubated with pristine GO. Once again, SERS not only
improves the sensitivity but also shortens the acquisition time (1 s). GO–AuNPs are internalized by
an energy-dependent process named endocytosis into the subcellular level of individual cells and
provide localized sensing and images. The author has provided information on good distribution and
stability (several weeks) of the nanohybrid in aqueous dispersion, which indicates higher longevity
in intracellular condition. Besides, GO as well as Raman imaging have been approved again as
biocompatible and almost harmless to cells, respectively [218]. The internalization events of the hybrid
molecules were further supported by a more detailed study conducted by Huang et al. [222] by utilizing
SERS to illustrate the cellular uptake mechanism of GO–AuNPs nanocomposites in living cells. In their
study, Ca Ski cells are considered a model cell line and an inhomogeneous distribution of GO–AuNPs
inside the cells is found where internalization is mainly via the clathrin-mediated energy-dependent
endocytosis route.

Another group of scientists, reported a one-pot green technique for the intracellular synthesis of
AuNS aided by poly(vinylpyrrolidone) (PVP)-functionalized GO [220]. The random intracellular
distribution of GO/PVP/IGAuNPs in the cells allowed for ultrasensitive detection of cellular
components of cancer cells (A549, 4T1, and HeLa cells) located in the cytoplasm, nucleoplasm,
and nucleolus using SERS (Figure 13) and signals induced by the hybrid composites could be
collected as early as 15 h, thus enabling the early detection or diagnosis of cancer as well. Specifically,
a comparison of the SERS spectral analysis of GO/PVP/IGAuNPs and IGAuNPs individually showed
that the hybrid structure results in five times larger Raman enhancement, possibly due to the formation
of IGAuNP aggregates on GO [220]. More recently, Nergiz et al. [219] demonstrated a novel class of
multifunctional hybrid nanopatches made up of GO and Au nanostars and the internalization of intact
nanopatches into human epithelial breast cancer cells (SKBR-3) by Raman imaging. Raman mapping of
the graphitic band of GO showed that hybrid nanopatches are concentrated in the cytoplasm with weak
or no signal from the nucleus of the cell, thus indicating their presence in the cytoplasm and absence
in the nucleus. In the cytosolic space, hybrid nanopatches exhibit long-term biocompatibility with
extremely low cytotoxicity due to the amphipathic nature and large surface area of GO [219]. Kim and
co-workers [139] moved towards the in situ monitoring of the undifferentiated or differentiated state
or differentiation level of neural stem cells using 3D GO-encapsulated AuNPs by SERS. There is a
positive correlation between the number of C=C bonds and the Raman intensity at 1656 cm´1. Indeed,
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the membranes of the undifferentiated cell line have polyunsaturated fatty acids which are richer
in C=C bonds than normal/differentiated cells—this is the principle of differentiating cells by SERS
(Figure 14).

−

Figure 13. In the upper (a) GO/PVP/IGAuNPs and (b) IGAuNPs—SERS spectra of A549 cells 
Figure 13. In the upper (a) GO/PVP/IGAuNPs and (b) IGAuNPs—SERS spectra of A549 cells collected
from the regions corresponding to the cytoplasm, nucleoplasm, and nucleolus. In the lower—typical
SERS images of A549 cells contained with (a) IGAuNPs or (b) GO/PVP/IGAuNPs, showing the
distribution of gold nanostructures inside the cell. The dotted lines in the images are drawn to
indicate the boundaries of select cells. Adapted from [220], with permission from ©2012 American
Chemical Society.

 

μ

μ

Figure 14. Schematic diagram representing the method to detect the undifferentiated and differentiated
state of mNSCs using 3D GO-encapsulated AuNPs. Adapted from [139], with permission from
©2013 Elsevier.

Moreover, graphene–Au nanohexagons can differentiate between normal human breast cells,
cancer cells, and cancer stem cells by Raman spectroscopy. These substrates in a concentration of
100 µg/1 ˆ 104 cells led to a 5.4-fold increase in the detection of breast cancer cells and 4.8-fold
in sensitivity for the detection of breast cancer stem cells [207]. Bian et al. [138] fabricated GIAN
nanostructures by employing the CVD process to wrap the AuNCs with a thin layer of graphene and
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verified it as a SERS substrate using the analyte R6G. GIANs significantly amplify the Raman signal by
a factor of more than 100 by quenching background fluorescence and reducing the photocarbonization
or photobleaching of analytes. These GIAN nanostructures are utilized for multimodal imaging of
the breast cancer MCF-7 cells by significantly enhancing the Raman signals of the graphene shell by
the AuNCs core while making the MCF-7 cells light up clearly under laser excitation (Figure 15). It is
also evidently observed that the GIANs are distributed in the cytoplasm as the Raman signals are seen
throughout the cytoplasm, not in the nuclei [138]. Moreover, an interesting and valued experiment
is conducted by Wang et al. [223] using rGO–Au nanostars nanocomposites as active SERS materials
for anticancer drug (doxorubicin) loading, its release thus showing its promising potential role in
anticancer treatment for drug delivery of chemotherapeutic agents.

μ

 

Figure 15. (a) Raman spectrum (excitation at 632 nm) of GIANs showing the G and D bands of 

μ

Figure 15. (a) Raman spectrum (excitation at 632 nm) of GIANs showing the G and D bands of graphitic
carbon; (b) Raman imaging of MCF-7 cells with and without GIAN staining. BF: bright field, scale bar:
10 µm; (c) Raman spectra of R6G molecules, with and without GIAN, and with AuNPs, respectively.
The figures are adapted from [138], with permission from ©2014 Nature Publishing Group.

4. Conclusions, Challenges and Perspectives

Graphene–AuNPs hybrids display extraordinary synergistic properties when combined rather
than individually. These materials have attracted considerable attention and been used in the
biomedical and biosensing fields where biosensors are mainly based on electronic, electrochemical,
and optical sensing principles. This review provides insights for graphene–AuNPs synthesis and
discusses its importance and use in electrochemical and SERS biosensing platforms.

Synthesis techniques highly depend on the requirements of their intended applications. As such,
synthesis methods of GO–AuNPs vary from green synthesis to synthetic, in situ (reduction,
hydrothermal, electrochemical) to ex situ (covalent, noncovalent) AuNPs decoration, single layer
to alternate LBL assembly, and even in some cases wrapping of AuNPs by GNs. It has been noted that
graphene or rGO–AuNPs composites are used for electrochemical biosensor fabrication generally due
to their greater conductivity and high electron mobility, hence in situ reduction is preferable in this case.
Additionally, the in situ method is applicable whenever there is no urge for precise control over size,
shape, and density of AuNPs and their narrow size distribution as well. Conversely, ex situ decoration
is influenced by the predefined size, shape, and distribution of AuNS, which consequently minimizes
possible incompatibilities between the synthesis and assembly of AuNPs on the graphene sheets.
It has been noted that GO is generally used for the encapsulation of AuNS and their application has
been successful in the stem cell differentiation biosensing by SERS. The review has shown that recent
technological advancements in both graphene and AuNP synthesis are very promising to obtain high
quality graphene with controllable size, shapes, layers, and defects in a cost-effective, high yielding,
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and ecologically friendly manner, in addition to AuNPs of the desired size, morphology, crystallinity,
and good distribution on graphene sheets.

Graphene–AuNS have proven to be powerful sensing platforms for the fabrication of
comparatively low cost, robust, rapid, and sensitive electrochemical biosensors. These electrochemical
devices have been mostly applied in the biomedical fields for the detection of glucose either by
enzymatic or catalytic means, H2O2, biomolecules (DNA, protein), small molecules (dopamine),
microorganisms, food poisoning chemicals, environmental pollutants, and many more other analytes.
One of the major achievements is the detection of a multi-drug resistant strain of Mycobacterium

tuberculosis at fM level. All in all, electrochemical biosensors have the remarkable advantages of
customization, miniaturization, and fast analysis times, however, they also have common analytical
limitations, such as interferences from complex biological sample matrices and the inability to
simultaneously detect multiple analytes at a time.

Most noticeably, the graphene–AuNPs SERS-based biosensor is trending in the scientific
community due to its extremely high sensitivity as a result of its dual enhancement (chemical and
electromagnetic). This dual effect facilitates larger enhancements as well as more clearly distinguished
Raman peaks. This technology is being successfully utilized in multiple arenas for different purposes,
most notably the detection of single molecular differentiation, multiplex DNA detection in a single
laser excitation, screening of explosives, and security. One of the potential and exceptional applications
is the bioimaging of intracellular components by SERS for the early detection of cancer cells, which may
be a good alternative to conventional methods.

Graphene–AuNPs hybrid technology for biosensing is still in its infancy and, even though it is very
promising, a few challenges are yet to be addressed. SERS bioimaging by the graphene–AuNPs hybrid
has opened a new era but there needs to be extensive studies on long-term cytotoxicity, biocompatibility,
and distribution of graphene–AuNPs hybrids in vivo for future applications. In summary, the design
and manufacture of graphene–AuNPs hybrids and their implementation in biosensors is novel and
very promising for sensing both in vivo and ex vivo. The technology permits the construction of
highly sensitive, selective, customizable, and portable sensors for the detection of variable analytes.
This is a promising sensing technology that can undoubtedly result in concrete innovations through
concerted efforts between multidisciplinary teams which unite chemists, biochemists, material
scientists, physicists, biologists, and engineers worldwide.
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Abbreviations

APTES Aminopropyltriethoxysilane
ATP 4-aminothiphenol
Arg Arginine
Ar Argon
CBZ Carbamazepine
CILE Carbon Ionic Liquid Electrode
CNT Carbon Nanotube
CEA Carcinoembryonic Antigen
CTAB Cetyl-trimethylammonium bromide
CR-GO Chemically Reduced Graphene Oxide
CVD Chemical Vapor Deposition
cfu Colony Forming Unit
RDX Cyclotrimethylenetrinitramine
Cy3 Cysteamine
DES Diethylstilboestrol
DHB Dihydroxybenzoic Acid
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EIS Electrochemical Impedance Spectroscopy
EPA Environmental Protection Agency
fM Femtomolar
FAO Food and Agriculture Organization
FA Functionalizing Agent
GCE Glassy Carbon Electrode
GOD Glucose Oxidase
AuNC Gold Nanocrystal
AuNP Gold Nanoparticle
AuNS Gold Nanostructure
GA Graphene Aerogel
GNs Graphene Nanosheets
GO Graphene Oxide
Hb Hemoglobin
H2O2 Hydrogen Peroxide
ITO Indium Titanium Oxide
kW Kilowatt
LBL Layer by layer
LOD Limit of Detection
MHz Megahertz
MBA Mercaptophenyl Boronic Acid
MPTMS 3-mercaptopropyltrimethoxysilane
MRSA Methicillin Resistant Staphylococcus aureus
µM Micromolar
mM Milimolar
MDR Multidrug Resistant
NDs Nanodots
nM Nanomolar
nGO Nano graphene oxide
NR Nano Rod
NADH Nicotinamide Adenine Dinucleotide
N2 Nitrogen
ODT Octadecanethiol
ODA Octadecylamine
O2 Oxygen
ppm Parts per million
PEG Pegylated
pM Picomolar
Pt Platinum
PANI Polyaniline
PAH Poly allylamine hydrochloride
PLA Poly (lactic acid)
PVP Poly(vinylpyrrolidone)
KClsat Potassium Chloride saturated
rGO Reduced Graphene Oxide
RA Reducing Agent
RP Reducing Process
Ref. Reference
SCE Saturated Calomel Electrode
SEM Scanning Electron Microscopy
Si Silica
SiO2 Silica Oxide
Ag Silver
AgCl Silver Chloride
AgNS Silver nanostructures
ss Single Stranded
SDS Sodium Dodecyl Sulfate
SA Stabilizing Agent
SERS Surface Enhanced Raman Spectroscopy/Scattering
TR-GO Thermally Reduced Graphene Oxide
3D Three-dimensional
TB Toluidine Blue
TEM Transmission Electron Microscopy
2D Two dimensional
wt Weight
WHO World Health Organization
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